

PM_{2.5} concentrations, such sites would be considered representative of an area-wide location and, therefore, eligible for comparison to the annual PM_{2.5} NAAQS. PM $_{2.5}$ measurement data from monitors that are not representative of area-wide air quality but rather of relatively unique micro-scale, or localized hot spot, or unique middle-scale impact sites are not eligible for comparison to the annual PM_{2.5} NAAQS. PM_{2.5} measurement data from these monitors are eligible for comparison to the 24hour PM_{2.5} NAAQS. For example, if a micro- or middle-scale PM_{2.5} monitoring site is adjacent to a unique dominating local $PM_{2.5}$ source, then the PM_{2.5} measurement data from such a site would only be eligible for comparison to the 24-hour PM $_{\rm 2.5}$ NAAQS. Approval of sites that are suitable and sites that are not suitable for comparison with the annual $PM_{2.5}$ NAAQS is provided for as part of the annual monitoring network plan described in § 58.10.

(b) [Reserved]

[71 FR 61302, Oct. 17, 2006, as amended at 78 FR 3283, Jan. 15, 2013]

Subpart E [Reserved]

Subpart F—Air Quality Index Reporting

§58.50 Index reporting.

- (a) The State or where applicable, local agency shall report to the general public on a daily basis through prominent notice an air quality index that complies with the requirements of appendix G to this part.
- (b) Reporting is required for all individual MSA with a population exceeding 350,000.
- (c) The population of a metropolitan statistical area for purposes of index reporting is the latest available U.S. census population.

[71 FR 61302, Oct. 17, 2006, as amended at 80 FR 65466, Oct. 26, 2015]

Subpart G—Federal Monitoring

Source: 44 FR 27571, May 10, 1979, unless otherwise noted. Redesignated at 58 FR 8467, Feb. 12, 1993.

§58.60 Federal monitoring.

The Administrator may locate and operate an ambient air monitoring site if the State or local agency fails to locate, or schedule to be located, during the initial network design process, or as a result of the 5-year network assessments required in §58.10, a SLAMS station at a site which is necessary in the judgment of the Regional Administrator to meet the objectives defined in appendix D to this part.

[71 FR 61303, Oct. 17, 2006]

§58.61 Monitoring other pollutants.

The Administrator may promulgate criteria similar to that referenced in subpart B of this part for monitoring a pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant.

[71 FR 61303, Oct. 17, 2006]

APPENDIX A TO PART 58—QUALITY ASSURANCE REQUIREMENTS FOR MONITORS USED IN EVALUATIONS OF NATIONAL AMBIENT AIR QUALITY STANDARDS

- 1. General Information
- 2. Quality System Requirements
- 3. Measurement Quality Check Requirements 4. Calculations for Data Quality Assessments
- 5. Reporting Requirements
- 6. References

1. General Information

- 1.1 Applicability. (a) This appendix specifies the minimum quality system requirements applicable to SLAMS and other monitor types whose data are intended to be used to determine compliance with the NAAQS (e.g., SPMs, tribal, CASTNET, NCore, industrial, etc.), unless the EPA Regional Administrator has reviewed and approved the monitor for exclusion from NAAQS use and these quality assurance requirements.
- (b) Primary quality assurance organizations are encouraged to develop and maintain quality systems more extensive than the required minimums. Additional guidance for the requirements reflected in this appendix can be found in the "Quality Assurance Handbook for Air Pollution Measurement Systems," Volume II (see reference 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix.
- 1.2 Primary Quality Assurance Organization (PQAO). A PQAO is defined as a monitoring

organization or a group of monitoring organizations or other organization that is responsible for a set of stations that monitors the same pollutant and for which data quality assessments will be pooled. Each criteria pollutant sampler/monitor must be associated with only one PQAO. In some cases, data quality is assessed at the PQAO level.

- 1.2.1 Each PQAO shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably homogeneous as a result of common factors. Common factors that should be considered in defining PQAOs include:
- (a) Operation by a common team of field operators according to a common set of procedures:
- (b) Use of a common quality assurance project plan (QAPP) or standard operating procedures;
- (c) Common calibration facilities and standards;
- (d) Oversight by a common quality assurance organization; and
- (e) Support by a common management organization (i.e., state agency) or laboratory. Since data quality assessments are made and data certified at the PQAO level, the monitoring organization identified as the PQAO will be responsible for the oversight of the quality of data of all monitoring organizations within the PQAO.
- 1.2.2 Monitoring organizations having difficulty describing its PQAO or in assigning specific monitors to primary quality assurance organizations should consult with the appropriate EPA Regional Office. Any consolidation of monitoring organizations to PQAOs shall be subject to final approval by the appropriate EPA Regional Office.
- 1.2.3 Each PQAO is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, PQAOs and the EPA shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documentation that demonstrate overall compliance with Part 58. Accordingly, the EPA and PQAOs shall use a 'weight of evidence" approach when determining the suitability of data for regulatory decisions. The EPA reserves the authority to use or not use monitoring data submitted by a monitoring organization when making regulatory decisions based on the EPA's assessment of the quality of the data. Consensus built validation templates or validation criteria already approved in QAPPs should be

used as the basis for the weight of evidence approach.

- 1.3 Definitions.
- (a) Measurement Uncertainty. A term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured.
- (b) Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.
- (c) Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.
- (d) Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.
- (e) Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.
- (f) Detection Limit. The lowest concentration or amount of target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.
- 1.4 Measurement Quality Checks. The measurement quality checks described in section 3 of this appendix shall be reported to AQS and are included in the data required for certification.
- 1.5 Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to the EPA. To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3, 4, and 5 of this appendix. On the other hand, the selection and extent of the quality assurance and quality control activities used by a monitoring organization depend on a number of local factors such as field and laboratory conditions, the objectives for monitoring, the level of data quality needed, the expertise of assigned personnel, the cost of control procedures, pollutant concentration levels, etc. Therefore, quality system requirements in section 2 of this appendix are specified in general terms to allow each monitoring organization to develop a quality system that is most efficient and effective for its own circumstances while achieving the data quality objectives described in this appendix.

2. Quality System Requirements

A quality system (reference 1 of this appendix) is the means by which an organization manages the quality of the monitoring

information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required quality assurance and quality control activities.

- 2.1 Quality Management Plans and Quality Assurance Project Plans. All PQAOs must develop a quality system that is described and approved in quality management plans (QMP) and QAPPs to ensure that the monitoring results:
- (a) Meet a well-defined need, use, or purpose (reference 5 of this appendix);
- (b) Provide data of adequate quality for the intended monitoring objectives;
- (c) Satisfy stakeholder expectations;
- (d) Comply with applicable standards specifications;
- (e) Comply with statutory (and other legal) requirements; and
- (f) Reflect consideration of cost and economics.

2.1.1 The QMP describes the quality system in terms of the organizational structure. functional responsibilities of management and staff, lines of authority, and required interfaces for those planning, implementing, assessing and reporting activities involving environmental data operations (EDO). The QMP must be suitably documented in accordance with EPA requirements (reference 2 of this appendix), and approved by the appropriate Regional Administrator, or his or her representative. The quality system described in the QMP will be reviewed during the systems audits described in section 2.5 of this appendix. Organizations that implement long-term monitoring programs with EPA funds should have a separate QMP document. Smaller organizations, organizations that do infrequent work with the EPA or have monitoring programs of limited size or scope may combine the QMP with the QAPP if approved by, and subject to any conditions of the EPA. Additional guidance on this process can be found in reference 10 of this appendix. Approval of the recipient's QMP by the appropriate Regional Administrator or his or her representative may allow delegation of authority to the PQAOs independent quality assurance function to review and approve environmental data collection activities adequately described and covered under the scope of the QMP and documented in appropriate planning documents (QAPP). Where a PQAO or monitoring organization has been delegated authority to review and approve their QAPP, an electronic copy must be submitted to the EPA region at the time it is submitted to the PQAO/monitoring organization's QAPP approving authority. The QAPP will be reviewed by the EPA during systems audits or circumstances related to data quality. The QMP submission and approval dates for PQAOs/monitoring organizations must be

reported to AQS either by the monitoring organization or the EPA Region.

2.1.2 The QAPP is a formal document describing, in sufficient detail, the quality system that must be implemented to ensure that the results of work performed will satisfy the stated objectives. PQAOs must develop QAPPs that describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the data quality objectives for the EDO. The quality assurance policy of the EPA requires every EDO to have a written and approved QAPP prior to the start of the EDO. It is the responsibility of the PQAO/ monitoring organization to adhere to this policy. The QAPP must be suitably documented in accordance with EPA requirements (reference 3 of this appendix) and include standard operating procedures for all EDOs either within the document or by appropriate reference. The QAPP must identify each PQAO operating monitors under the QAPP as well as generally identify the sites and monitors to which it is applicable either within the document or by appropriate reference. The QAPP submission and approval dates must be reported to AQS either by the monitoring organization or the EPA Region.

2.1.3 The PQAO/monitoring organization's quality system must have adequate resources both in personnel and funding to plan, implement, assess and report on the achievement of the requirements of this appendix and it's approved QAPP.

2.2 Independence of Quality Assurance. The PQAO must provide for a quality assurance management function, that aspect of the overall management system of the organization that determines and implements the quality policy defined in a PQAO's QMP. Quality management includes strategic planning, allocation of resources and other systematic planning activities (e.g., planning, implementation, assessing and reporting) pertaining to the quality system. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assure the implementation of the organization's quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3. Data Quality Performance Requirements.

2.3.1 Data Quality Objectives. The DQOs, or the results of other systematic planning processes, are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the monitoring objectives (reference 5 of this appendix). The DQOs will be developed by the EPA to support the primary regulatory objectives for each criteria

pollutant. As they are developed, they will be added to the regulation. The quality of the conclusions derived from data interpretation can be affected by population uncertainty (spatial or temporal uncertainty) and measurement uncertainty (uncertainty associated with collecting, analyzing, reducing and reporting concentration data). This appendix focuses on assessing and controlling measurement uncertainty.

2.3.1.1 Measurement Uncertainty for Automated and Manual $PM_{2.5}$ Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and ± 10 percent for total bias.

2.3.1.2 Measurement Uncertainty for Automated O_3 Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3 Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4 Measurement Uncertainty for NO_2 . The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5 Measurement Uncertainty for SO_2 . The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the CV of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4 National Performance Evaluation Programs. The PQAO shall provide for the implementation of a program of independent and adequate audits of all monitors providing data for NAAQS compliance purposes including the provision of adequate resources for such audit programs. A monitoring plan (or QAPP) which provides for PQAO participation in the EPA's National Performance Audit Program (NPAP), the PM25 Performance Evaluation Program (PM2.5-PEP) program and the Pb Performance Evaluation Program (Pb-PEP) and indicates the consent of the PQAO for the EPA to apply an appropriate portion of the grant funds, which the EPA would otherwise award to the PQAO for these QA activities, will be deemed by the EPA to meet this requirement. For clarification and to participate. PQAOs should contact either the appropriate EPA regional quality assurance (QA) coordinator at the appropriate EPA Regional Office location, or

the NPAP coordinator at the EPA Air Quality Assessment Division, Office of Air Quality Planning and Standards, in Research Triangle Park, North Carolina. The PQAOs that plan to implement these programs (self-implement) rather than use the federal programs must meet the adequacy requirements found in the appropriate sections that follow, as well as meet the definition of independent assessment that follows.

2.4.1 Independent assessment. An assessment performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. This auditing organization must not be involved with the generation of the ambient air monitoring data. An organization can conduct the performance evaluation (PE) if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. In addition, the sample analysis of audit filters must be performed by a laboratory facility and laboratory equipment separate from the facilities used for routine sample analysis. Field and laboratory personnel will be required to meet PE field and laboratory training and certification requirements to establish comparability to federally implemented programs.

2.5 Technical Systems Audit Program. Technical systems audits of each PQAO shall be conducted at least every 3 years by the appropriate EPA Regional Office and reported to the AQS. If a PQAO is made up of more than one monitoring organization, all monitoring organizations in the PQAO should be audited within 6 years (two TSA cycles of the PQAO). As an example, if a state has five local monitoring organizations that are consolidated under one PQAO, all five local monitoring organizations should receive a technical systems audit within a 6-year period. Systems audit programs are described in reference 10 of this appendix.

2.6 Gaseous and Flow Rate Audit Standards. 2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for CO, SO2, NO, and NO2 must be traceable to either a National Institute of Standards and Technology (NIST) Traceable Reference Material (NTRM) or a NIST-certified Gas Manufacturer's Internal Standard (GMIS), certified in accordance with one of the procedures given in reference 4 of this appendix. Vendors advertising certification with the procedures provided in reference 4 of this appendix and distributing gases as "EPA Protocol Gas" for ambient air monitoring purposes must participate in the EPA

Ambient Air Protocol Gas Verification Program or not use "EPA" in any form of advertising. Monitoring organizations must provide information to the EPA on the gas producers they use on an annual basis and those PQAOs purchasing standards will be obligated, at the request of the EPA, to participate in the program at least once every 5 years by sending a new unused standard to a designated verification laboratory.

2.6.2 Test concentrations for O_3 must be obtained in accordance with the ultraviolet photometric calibration procedure specified in appendix D to Part 50 of this chapter and by means of a certified NIST-traceable O_3 transfer standard. Consult references 7 and 8 of this appendix for guidance on transfer standards for O_3 .

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is NIST-traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flowmeters is provided in reference 10 of this appendix.

2.7 Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 11 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 describes specific guidance for the development of a quality system for data collected for comparison to the NAAQS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in Part 50 of this chapter or in the respective equivalent method descriptions available from the EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method monitors are contained in the respective operation or instruction manuals associated with those monitors.

3. Measurement Quality Check Requirements

This section provides the requirements for PQAOs to perform the measurement quality checks that can be used to assess data quality. Data from these checks are required to be submitted to the AQS within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. Table A-1 of this appendix provides a summary of the types and frequency of the measurement quality checks that will be described in this section.

- 3.1. Gaseous Monitors of SO_2 , NO_2 , O_3 , and CO.
- 3.1.1 One-Point Quality Control (QC) Check for SO_2 , NO_2 , O_3 , and CO. (a) A one-point QC check must be performed at least once every 2 weeks on each automated monitor used to measure SO_2 , NO_2 , O_3 and CO. With the advent of automated calibration systems, more frequent checking is strongly encouraged. See Reference 10 of this appendix for guid-

ance on the review procedure. The QC check is made by challenging the monitor with a QC check gas of known concentration (effective concentration for open path monitors) between the prescribed range of 0.005 and 0.08 parts per million (ppm) for SO₂, NO₂, and O₃, and between the prescribed range of 0.5 and 5 ppm for CO monitors. The QC check gas concentration selected within the prescribed range should be related to the monitoring objectives for the monitor. If monitoring at an NCore site or for trace level monitoring, the QC check concentration should be selected to represent the mean or median concentrations at the site. If the mean or median concentrations at trace gas sites are below the MDL of the instrument the agency can select the lowest concentration in the prescribed range that can be practically achieved. If the mean or median concentrations at trace gas sites are above the prescribed range the agency can select the highest concentration in the prescribed range. An additional QC check point is encouraged for those organizations that may have occasional high values or would like to confirm the monitors' linearity at the higher end of the operational range or around NAAQS concentrations. If monitoring for NAAQS decisions, the QC concentration can be selected at a higher concentration within the prescribed range but should also consider precision points around mean or median monitor concentrations.

- (b) Point analyzers must operate in their normal sampling mode during the QC check and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The QC check must be conducted before any calibration or adjustment to the monitor.
- (c) Open path monitors are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test, and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test concentration measurement will be the sum of the atmospheric pollutant concentration and

the QC test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path monitors should be tested during periods when the atmospheric pollutant concentrations are relatively low and

(d) Report the audit concentration of the QC gas and the corresponding measured concentration indicated by the monitor to AQS. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.1.2 Annual performance evaluation for SO_2 , NO_2 , O_3 , or CO. A performance evaluation must be conducted on each primary

monitor once a year. This can be accomplished by evaluating 25 percent of the primary monitors each quarter. The evaluation should be conducted by a trained experienced technician other than the routine site operator.

3.1.2.1 The evaluation is made by challenging the monitor with audit gas standards of known concentration from at least three audit levels. One point must be within two to three times the method detection limit of the instruments within the PQAOs network, the second point will be less than or equal to the 99th percentile of the data at the site or the network of sites in the PQAO or the next highest audit concentration level. The third point can be around the primary NAAQS or the highest 3-year concentration at the site or the network of sites in the PQAO. An additional 4th level is encouraged for those agencies that would like to confirm the monitors' linearity at the higher end of the operational range. In rare circumstances, there may be sites measuring concentrations above audit level 10. Notify the appropriate EPA region and the AQS program in order to make accommodations for auditing at levels above level 10.

Audit level	Concentration Range, ppm			
Addit level	O ₃	SO ₂	NO ₂	СО
1	0.004-0.0059	0.0003-0.0029	0.0003-0.0029	0.020-0.059
2	0.006-0.019	0.0030-0.0049	0.0030-0.0049	0.060-0.199
3	0.020-0.039	0.0050-0.0079	0.0050-0.0079	0.200-0.899
4	0.040-0.069	0.0080-0.0199	0.0080-0.0199	0.900-2.999
5	0.070-0.089	0.0200-0.0499	0.0200-0.0499	3.000-7.999
6	0.090-0.119	0.0500-0.0999	0.0500-0.0999	8.000-15.999
7	0.120-0.139	0.1000-0.1499	0.1000-0.2999	16.000-30.999
8	0.140-0.169	0.1500-0.2599	0.3000-0.4999	31.000-39.999
9	0.170-0.189	0.2600-0.7999	0.5000-0.7999	40.000-49.999
10	0.190-0.259	0.8000-1.000	0.8000-1.000	50.000-60.000

3.1.2.2 The NO_2 audit techniques may vary depending on the ambient monitoring method. For chemiluminescence-type NO_2 analyzers, gas phase titration (GPT) techniques should be based on EPA guidance documents and monitoring agency experience. The NO_2 gas standards may be more appropriate than GPT for direct NO_2 methods that do not employ converters. Care should be taken to ensure the stability of such gas standards prior to use.

3.1.2.3 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6.1 of this appendix. The gas standards and equipment used for the performance evaluation must not be the same as the standards and equipment used for one-point QC, calibrations, span evaluations or NPAP.

3.1.2.4 For point analyzers, the evaluation shall be carried out by allowing the monitor to analyze the audit gas test atmosphere in its normal sampling mode such that the test

atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable.

3.1.2.5 Open-path monitors are evaluated by inserting a test cell containing the various audit gas concentrations into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to

produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open path monitors should be evaluated during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, if the openpath instrument is not installed in a permanent manner, the monitoring path length must be reverified to be within ±3 percent to validate the evaluation since the monitoring path length is critical to the determination of the effective concentration.

3.1.2.6 Report both the evaluation concentrations (effective concentrations for open-path monitors) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open path monitors) indicated or produced by the monitor being tested to AQS. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.1 of this appendix.

3.1.3 National Performance Audit Program (NPAP).

The NPAP is a performance evaluation which is a type of audit where quantitative data are collected independently in order to evaluate the proficiency of an analyst, monitoring instrument or laboratory. Due to the implementation approach used in the program, NPAP provides a national independent assessment of performance while maintaining a consistent level of data quality. Details of the program can be found in reference 11 of this appendix. The program requirements include:

3.1.3.1 Performing audits of the primary monitors at 20 percent of monitoring sites per year, and 100 percent of the sites every 6 years. High-priority sites may be audited more frequently. Since not all gaseous criteria pollutants are monitored at every site within a PQAO, it is not required that 20 percent of the primary monitors for each pollutant receive an NPAP audit each year only that 20 percent of the PQAOs monitoring sites receive an NPAP audit. It is expected

that over the 6-year period all primary monitors for all gaseous pollutants will receive an NPAP audit.

3.1.3.2 Developing a delivery system that will allow for the audit concentration gasses to be introduced to the probe inlet where logistically feasible.

3.1.3.3 Using audit gases that are verified against the NIST standard reference methods or special review procedures and validated annually for CO, SO_2 and NO_2 , and at the beginning of each quarter of audits for O_3 .

3.1.3.4 As described in section 2.4 of this appendix, the PQAO may elect, on an annual basis, to utilize the federally implemented NPAP program. If the PQAO plans to self-implement NPAP, the EPA will establish training and other technical requirements for PQAOs to establish comparability to federally implemented programs. In addition to meeting the requirements in sections 3.1.3.1 through 3.1.3.3 of this appendix, the PQAO must:

(a) Utilize an audit system equivalent to the federally implemented NPAP audit system and is separate from equipment used in annual performance evaluations.

(b) Perform a whole system check by having the NPAP system tested against an independent and qualified EPA lab, or equivalent.

- (c) Evaluate the system with the EPA NPAP program through collocated auditing at an acceptable number of sites each year (at least one for an agency network of five or less sites; at least two for a network with more than five sites).
- (d) Incorporate the NPAP in the PQAO's quality assurance project plan.
- (e) Be subject to review by independent, EPA-trained personnel.
- (f) Participate in initial and update training/certification sessions.

3.1.3.5 OAQPS, in consultation with the relevant EPA Regional Office, may approve the PQAO's plan to self-implement NPAP if the OAQPS determines that the PQAO's self-implementation plan is equivalent to the federal programs and adequate to meet the objectives of national consistency and data quality.

3.2 $PM_{2.5}$.

3.2.1 Flow Rate Verification for $PM_{2.5}$. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure $PM_{2.5}$. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's

normal flow rate. Care should be used in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. Report the flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations)

3.2.2 Semi-Annual Flow Rate Audit for $PM_{2.5}$. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate(s) using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.2.3 Collocated Quality Control Sampling Procedures for $PM_{2.5}$. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor. There can be only one primary monitor at a monitoring site for a given time period.

3.2.3.1 For each distinct monitoring method designation (FRM or FEM) that a PQAO is using for a primary monitor, the PQAO must have 15 percent of the primary monitors of each method designation collocated (values of 0.5 and greater round up); and have at least one collocated quality control monitor (if the total number of monitors is less than three). The first collocated monitor must be a designated FRM monitor.

3.2.3.2 In addition, monitors selected for collocation must also meet the following requirements:

(a) A primary monitor designated as an EPA FRM shall be collocated with a quality control monitor having the same EPA FRM method designation.

(b) For each primary monitor designated as an EPA FEM used by the PQAO, 50 per-

cent of the monitors designated for collocation, or the first if only one collocation is necessary, shall be collocated with a FRM quality control monitor and 50 percent of the monitors shall be collocated with a monitor having the same method designation as the FEM primary monitor. If an odd number of collocated monitors is required, the additional monitor shall be a FRM quality control monitor. An example of the distribution of collocated monitors for each unique FEM is provided below. Table A-2 of this appendix demonstrates the collocation procedure with a PQAO having one type of primary FRM and multiple primary FEMs.

#Primary FEMS of a unique method designation	#Collocated	#Collocated with an FRM	#Collocated with same method designation
1–9	1 2 3 4 5 6	1 1 2 2 3 3	0 1 1 2 2 3

3.2.3.3 Since the collocation requirements are used to assess precision of the primary monitors and there can only be one primary monitor at a monitoring site, a site can only count for the collocation of the method designation of the primary monitor at that site.

3.2.3.4 The collocated monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20 percent of either the annual or 24-hour NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with annual average or daily concentrations within ±20 percent of the annual NAAQS or 24-hour NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the annual mean concentrations or 24-hour concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both primary and collocated quality control samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.2.4 PM_{2.5} Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP as described in section 2.4 of this appendix or a comparable program. Performance evaluations will be performed annually within each PQAO. For PQAOs with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For PQAOs with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and above 3 $\mu g/m^3$. Siting of the PEP monitor must be consistent with section 3.2.3.4(c). However, any horizontal distance greater than 4 meters and any vertical distance greater than one meter must be reported to the EPA regional PEP coordinator. Additionally for every monitor designated as a primary monitor, a primary quality assurance organization must:

3.2.4.1 Have each method designation evaluated each year; and,

3.2.4.2 Have all FRM, FEM or ARM samplers subject to a PEP audit at least once every 6 years, which equates to approximately 15 percent of the monitoring sites audited each year.

3.2.4.3. Additional information concerning the PEP is contained in reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for $PM_{2.5}$ are described in section 4.2.5 of this appendix.

 $3.3PM_{10}$.

3.3.1 Flow Rate Verification for PM₁₀ Low Volume Samplers (less than 200 liter/minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM₁₀. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.3.2 Flow Rate Verification for PM_{10} High Volume Samplers (greater than 200 liters/minute). For PM_{10} high volume samplers, the verification frequency is one verification every 90 days (quarter) with 4 in a year. Other than verification frequency, follow the same technical procedure as described in section 3.3.1 of this appendix.

3.3.3 Semi-Annual Flow Rate Audit for PM_{10} . Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.3.4 Collocated Quality Control Sampling Procedures for Manual PM_{10} . Collocated sampling for PM_{10} is only required for manual samplers. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site and designate the other as the quality control monitor.

3.3.4.1 For manual PM_{10} samplers, a PQAO must:

(a) Have 15 percent of the primary monitors collocated (values of 0.5 and greater round up); and

(b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.3.4.2 The collocated quality control monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with daily concentrations estimated to be within plus or minus 20 percent of the applicable NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with daily concentrations within plus or minus 20 percent of the NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the daily mean concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(e) In determining the number of collocated quality control sites required for PM10, monitoring networks for lead (Pb-PM₁₀) should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM $_{10}$ and PM $_{10}$ may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using the filter from a quality control monitor for both PM10 and Pb analysis. A PM₁₀ filter weighing should occur prior to any Pb analysis.

3.4.1 Flow Rate Verification for Pb-PM10 Low Volume Samplers (less than 200 liter/ minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure Pb. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it

does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.4.2 Flow Rate Verification for Pb High Volume Samplers (greater than 200 liters/minute). For high volume samplers, the verification frequency is one verification every 90 days (quarter) with four in a year. Other than verification frequency, follow the same technical procedure as described in section 3.4.1 of this appendix.

3.4.3 Semi-Annual Flow Rate Audit for Pb. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.4.4 Collocated Quality Control Sampling for TSP Pb for monitoring sites other than non-source oriented NCore. For each pair of collocated monitors for manual TSP Pb samplers, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor

3.4.4.1 A PQAO must:

- (a) Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and
- (b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).
- 3.4.4.2 The collocated quality control monitors should be deployed according to the following protocol:
- (a) The first collocated Pb site selected must be the site measuring the highest Pb concentrations in the network. If the site is impractical, alternative sites, approved by

the EPA Regional Administrator, may be selected. If additional collocated sites are necessary, collocated sites may be chosen that reflect average ambient air Pb concentrations in the network.

- (b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference.
- (c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.
- 3.4.5 Collocated Quality Control Sampling for Pb–PM $_{10}$ at monitoring sites other than non-source oriented NCore. If a PQAO is monitoring for Pb–PM $_{10}$ at sites other than at a non-source oriented NCore site then the PQAO must:
- 3.4.5.1 Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and
- 3.4.5.2 Have at least one collocated quality control monitor (if the total number of monitors is less than three).
- 3.4.5.3 The collocated monitors should be deployed according to the following protocol:
- (a) Fifty percent of the collocated quality control monitors should be deployed at sites with the highest 3-month average concentrations and the remainder at the PQAOs discretion.
- (b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.
- (c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

- (d) In determining the number of collocated quality control sites required for Pb-PM₁₀, monitoring networks for PM₁₀ should be treated independently from networks for Pb-PM₁₀, even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM₁₀ and PM₁₀ may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using a using the filter from a quality control monitor for both PM₁₀ and Pb analysis. A PM₁₀ filter weighing should occur prior to any Pb analysis.
- 3.4.6 Pb Analysis Audits. Each calendar quarter, audit the Pb reference or equivalent method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb standard on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

Range	Equivalent ambient Pb concentration, µg/m³
1 2	30-100% of Pb NAAQS. 200-300% of Pb NAAQS.

- (a) Extract the audit samples using the same extraction procedure used for exposed filters.
- (b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.
- (c) Report the audit concentrations (in μg Pb/filter or strip) and the corresponding measured concentrations (in μg Pb/filter or strip) to AQS using AQS unit code 077. The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.2.6 of this appendix.
- 3.4.7 Pb PEP Procedures for monitoring sites other than non-source oriented NCore. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP described in section 2.4 of this appendix or a comparable program. Each year, one performance evaluation audit must be performed at one Pb site in each primary quality assurance organization that has less than or equal to five sites and two audits at PQAOs with greater than five sites. Nonsource oriented NCore sites are not counted. Siting of the PEP monitor must be consistent with section 3.4.5.3(b). However, any horizontal distance greater than 4 meters and any vertical distance greater than 1 meter must be reported to the EPA regional

PEP coordinator. In addition, each year, four collocated samples from PQAOs with less than or equal to five sites and six collocated samples at PQAOs with greater than five sites must be sent to an independent laboratory, the same laboratory as the performance evaluation audit, for analysis. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for Pb are described in section 4.2.4 of this appendix.

4. CALCULATIONS FOR DATA QUALITY ASSESSMENTS

- (a) Calculations of measurement uncertainty are carried out by the EPA according to the following procedures. The PQAOs must report the data to AQS for all measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.
- (b) The EPA will provide annual assessments of data quality aggregated by site and PQAO for SO₂, NO₂, O₃ and CO and by PQAO for PM_{10} , $PM_{2.5}$, and Pb.
- (c) At low concentrations, agreement between the measurements of collocated qual-

ity control samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, collocated measurement pairs are selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

- (1) Pb: $0.002 \mu g/m^3$ (Methods approved after 3/04/2010, with exception of manual equivalent method EQLA–0813–803).
- (2) Pb: 0.02 $\mu g/m^3$ (Methods approved before 3/04/2010, and manual equivalent method EQLA–0813–803).
 - (3) PM₁₀ (Hi-Vol): 15 μg/m³.
 - (4) PM_{10} (Lo-Vol): $3~\mu g/m^3.$
 - (5) $PM_{2.5}$: 3 $\mu g/m^3$.
- 4.1 Statistics for the Assessment of QC Checks for SO₂ NO₂, O₃ and CO.
- 4.1.1 Percent Difference. Many of the measurement quality checks start with a comparison of an audit concentration or value (flow rate) to the concentration/value measured by the monitor and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference, d_i , as follows:

Equation 1
$$d_i = \frac{meas - audit}{audit} \cdot 100$$

where *meas* is the concentration indicated by the PQAO's instrument and *audit* is the audit concentration of the standard used in the QC check being measured.

4.1.2 Precision Estimate. The precision estimate is used to assess the one-point QC

checks for SO_2 , NO_2 , O_3 , or CO described in section 3.1.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:

$$CV = \sqrt{\frac{n \cdot \sum_{i=1}^{n} d_i^2 - \left(\sum_{i=1}^{n} d_i\right)^2}{n(n-1)}} \cdot \sqrt{\frac{n-1}{\chi_{0,1,n-1}^2}}$$

where n is the number of single point checks being aggregated; X^2 _{0.1,n-1} is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

 $4.\overline{1.3}$ Bias Estimate. The bias estimate is calculated using the one-point QC checks for

 SO_2 , NO_2 , O_3 , or CO described in section 3.1.1 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:

Equation 3

$$|bias| = AB + t_{0.95, n-1} \cdot \frac{AS}{\sqrt{n}}$$

where n is the number of single point checks being aggregated; $t_{0.95,n-1}$ is the 95th quantile of a t-distribution with n-1 degrees of free-

dom; the quantity AB is the mean of the absolute values of the $d_{i's}$ and is calculated using equation 4 of this section:

Equation 4

$$AB = \frac{1}{n} \cdot \sum_{i=1}^{n} |d_i|$$

and the quantity AS is the standard deviation of the absolute value of the $d_{i\,'\,s}$ and is calculated using equation 5 of this section:

Equation 5

$$AS = \sqrt{\frac{n \cdot \sum_{i=1}^{n} |d_{i}|^{2} - \left(\sum_{i=1}^{n} |d_{i}|\right)^{2}}{n(n-1)}}$$

4.1.3.1 Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.2 Statistics for the Assessment of PM_{10} , PM_{25} , and Pb.

4.2.1 Collocated Quality Control Sampler Precision Estimate for PM_{10} , $PM_{2.5}$ and Pb. Precision is estimated via duplicate measurements from collocated samplers. It is recommended that the precision be aggregated at the PQAO level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than or equal to the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculate the relative percent difference, d_i , using equation 6 of this appendix:

Equation 6

$$d_i = \frac{X_i - Y_i}{(X_i + Y_i)/2} \cdot 100$$

where X_i is the concentration from the primary sampler and Y_i is the concentration value from the audit sampler. The coeffi-

cient of variation upper bound is calculated using equation 7 of this appendix:

$$CV = \sqrt{\frac{n \cdot \sum_{i=1}^{n} d_{i}^{2} - \left(\sum_{i=1}^{n} d_{i}\right)^{2}}{2n(n-1)}} \cdot \sqrt{\frac{n-1}{X_{0,1,n-1}^{2}}}$$

where n is the number of valid data pairs being aggregated, and X^2 _{0.1,n-1} is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom. The factor of 2 in the denominator adjusts for the fact that each d_i is calculated from two values with error.

4.2.2 One-Point Flow Rate Verification Bias Estimate for PM_{10} , $PM_{2.5}$ and Pb. For each one-point flow rate verification, calculate the percent difference in volume using equation 1 of this appendix where meas is the value indicated by the sampler's volume measurement and audit is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, where n is the number of flow rate audits being aggregated; $t_{0.95,n-1}$ is the 95th quantile of a t-distribution with n-1 degrees of freedom, the quantity AB is the mean of the absolute values of the $d_{i's}$ and is calculated using equation 4 of this aparance of the same of the absolute values of the same and is calculated using equation 4 of this aparance is the same of the absolute values of the same and is calculated using equation 4 of this aparance is the same of the absolute values of the same and is calculated using equation 4 of this aparance is the same and is calculated using equation 4 of this aparance is the value of the same and is calculated using equation 4 of this aparance is the value of the same and is calculated using equation 4 of this aparance is the value of the same and is calculated using equation 4 of this aparance is the value of the same and is the v

pendix, and the quantity AS in equation 3 of this appendix is the standard deviation of the absolute values if the $d_{i's}$ and is calculated using equation 5 of this appendix.

4.2.3 Semi-Annual Flow Rate Audit Bias Estimate for PM_{IO} , $PM_{2.5}$ and Pb. Use the same procedure described in section 4.2.2 for the evaluation of flow rate audits.

4.2.4 Performance Evaluation Programs Bias Estimate for Pb. The Pb bias estimate is calculated using the paired routine and the PEP monitor as described in section 3.4.7. Use the same procedures as described in section 4.1.3 of this appendix.

4.2.5 Performance Evaluation Programs Bias Estimate for $PM_{2.5}$. The bias estimate is calculated using the PEP audits described in section 4.1.3 of this appendix. The bias estimator is based on the mean percent differences (Equation 1). The mean percent difference, D, is calculated by Equation 8 below.

$$D = \frac{1}{n_i} \cdot \sum_{i=1}^{n_j} d_i$$

where n_j is the number of pairs and $d_1,d_2,...d_{nj}$ are the biases for each pair to be averaged.

4.2.6 Pb Analysis Audit Bias Estimate. The bias estimate is calculated using the analysis audit data described in section 3.4.6. Use the same bias estimate procedure as described in section 4.1.3 of this appendix.

5. REPORTING REQUIREMENTS

5.1 Reporting Requirements. For each pollutant, prepare a list of all monitoring sites and their AQS site identification codes in each PQAO and submit the list to the appropriate EPA Regional Office, with a copy to AQS. Whenever there is a change in this list of monitoring sites in a PQAO, report this

change to the EPA Regional Office and to AQS.

5.1.1 Quarterly Reports. For each quarter, each PQAO shall report to AQS directly (or via the appropriate EPA Regional Office for organizations not direct users of AQS) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in 40 CFR 58.16. The EPA strongly encourages early submission of the quality assurance data in order to assist the PQAOs ability to control and evaluate the quality of the ambient air data.

5.1.2 Annual Reports.

5.1.2.1 When the PQAO has certified relevant data for the calendar year, the EPA will calculate and report the measurement uncertainty for the entire calendar year.

6. References

- (1) American National Standard—Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. ANSI/ASQC E4-2014. February 2014. Available from American Society for Quality Control, 611 East Wisconsin Avenue, Milwaukee, WI 53202.
- (2) EPA Requirements for Quality Management Plans. EPA QA/R-2. EPA/240/B-01/002. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460. http://www.epa.gov/quality/agency-widequality-system-documents.
- (3) EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. EPA/240/B-01/003. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.
- (4) EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards. EPA-600/R-12/531. May, 2012. Available from U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park NC 27711. http://cfpub.epa.gov/si/si_public
- $_record_report.cfm?dirEntryId=245292.$
- (5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February, 2006. Office of Environmental Information. Washington DC 20460. http://

www.epa.gov/quality/agency-wide-quality-system-documents.

- (6) List of Designated Reference and Equivalent Methods. Available from U.S. Environmental Protection Agency, National Exposure Research Laboratory, Human Exposure and Atmospheric Sciences Division, MD-D205-03, Research Triangle Park, NC 27711. http://www3.epa.gov/ttn/amtic/criteria.html.
- (7) Transfer Standards for the Calibration of Ambient Air Monitoring Analyzers for Ozone. EPA-454/B-13-004 U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, October, 2013. http://www3.epa.gov/ttn/amtic/qapollutant.html.
- (8) Paur, R.J. and F.F. McElroy. Technical Assistance Document for the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September, 1979. http://www.epa.gov/ttn/amtic/cpreldoc.html.
- (9) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 1—A Field Guide to Environmental Quality Assurance. EPA-600/R-94/038a. April 1994. Available from U.S. Environmental Protection Agency, ORD Publications Office, Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268. http://www3.epa.gov/ttn/amtic/qalist.html.
- (10) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program Quality System Development. EPA-454/B-13-003. http://www3.epa.gov/ttn/amtic/qalist.html.
- (11) National Performance Evaluation Program Standard Operating Procedures. http://www3.epa.gov/ttn/amtic/npapsop.html.

TABLE A-1 OF APPENDIX A TO PART 58—MINIMUM DATA ASSESSMENT REQUIREMENTS FOR NAAQS RELATED CRITERIA POLLUTANT MONITORS

Method	Assessment method	Coverage	Minimum frequency	Parameters reported	AQS assess ment type
	Gas	eous Methods (CO, NO	2, SO ₂ , O ₃)		
One-Point QC for SO ₂ , NO ₂ , O3, CO.	Response check at concentration 0.005–0.08 ppm SO ₂ , NO ₂ , O3, and. 0.5 and 5 ppm CO	Each analyzer	Once per 2 weeks.	Audit concentration ¹ and measured concentration. ²	One-Point QC.
Annual performance evaluation for SO ₂ , NO ₂ , O3, CO.	See section 3.1.2 of this appendix.	Each analyzer	Once per year.	Audit concentration ¹ and measured con- centration ² for each level.	Annual PE.
NPAP for SO ₂ , NO ₂ , O3, CO.	Independent Audit	20% of sites each year.	Once per year.	Audit concentration ¹ and measured con- centration ² for each level.	NPAP.
		Particulate Method	ls		
Continuous ⁴ meth- od—collocated qual- ity control sampling PM _{2.5} .	Collocated samplers	15%	1-in-12 days	Primary sampler con- centration and du- plicate sampler con- centration. 3	No Trans- action re- ported as raw data.

TABLE A-1 OF APPENDIX A TO PART 58-MINIMUM DATA ASSESSMENT REQUIREMENTS FOR NAAQS RELATED CRITERIA POLLUTANT MONITORS—Continued

Method	Assessment method	Coverage	Minimum frequency	Parameters reported	AQS assess- ment type
Manual method—collocated quality control sampling PM ₁₀ , PM _{2.5} , Pb—TSP, Pb—PM ₁₀ .	Collocated samplers	15%	1-in-12 days	Primary sampler con- centration and du- plicate sampler con- centration. ³	No Trans- action re- ported as raw data.
Flow rate verification PM ₁₀ (low Vol) PM _{2.5} , Pb–PM ₁₀ .	Check of sampler flow rate.	Each sampler	Once every month.	Audit flow rate and measured flow rate indicated by the sampler.	Flow Rate Verificatio- n.
Flow rate verification PM ₁₀ (High-Vol), Pb–TSP.	Check of sampler flow rate.	Each sampler	Once every quarter.	Audit flow rate and measured flow rate indicated by the sampler.	Flow Rate Verificatio- n.
Semi-annual flow rate audit PM ₁₀ , TSP, PM ₁₀ –2.5, PM _{2.5} , Pb–TSP, Pb–PM ₁₀ .	Check of sampler flow rate using independent standard.	Each sampler,	Once every 6 months.	Audit flow rate and measured flow rate indicated by the sampler.	Semi Annual Flow Rate Audit.
Pb analysis audits Pb- TSP, Pb-PM ₁₀ .	Check of analytical system with Pb audit strips/filters.	Analytical	Once each quarter.	Measured value and audit value (ug Pb/ filter) using AQS unit code 077.	Pb Analysis Audits.
Performance Evaluation Program PM _{2.5} .	Collocated samplers	(1) 5 valid audits for primary QA orgs, with ≤5 sites (2) 8 valid audits for primary QA orgs, with >5 sites (3) All samplers in 6 years.	Distributed over all 4 quarters.	Primary sampler con- centration and per- formance evaluation sampler concentra- tion.	PEP.
Performance Evaluation Program Pb— TSP, Pb–PM ₁₀ .	Collocated samplers	(1) 1 Valid audit and 4 collocated samples for primary QA orgs, with ≤5 sites (2) 2 valid audits and 6 collocated samples for primary QA orgs with >5 sites.	Distributed over all 4 quarters.	Primary sampler con- centration and per- formance evaluation sampler concentra- tion. Primary sam- pler concentration and duplicate sam- pler concentration.	PEP.

Table A-2 of Appendix A to Part 58—Summary of $PM_{2.5}$ Number and Type of Collocation (15% Collocation Requirement) Required Using an Example of a PQAO That Has 54 Pri-MARY MONITORS (54 SITES) WITH ONE FEDERAL REFERENCE METHOD TYPE AND THREE TYPES OF APPROVED FEDERAL EQUIVALENT METHODS

Primary sampler method designation	Total No. of monitors	Total No. of collocated	No. of collocated with FRM	No. of collocated with same method designation as primary
FRM	20	3	3	3
	20	3	2	1
	2	1	1	0
	12	2	1	1

[81 FR 17280, Mar. 28, 2016]

Effective concentration for open path analyzers.
 Corrected concentration, if applicable for open path analyzers.
 Both primary and collocated sampler values are reported as raw data.
 PM_{2.5} is the only particulate criteria pollutant requiring collocation of continuous and manual primary monitors.

APPENDIX C TO PART 58—AMBIENT AIR QUALITY MONITORING METHODOLOGY

- 1.0 Purpose
- 2.0 SLAMS Ambient Air Monitoring Stations 3.0 NCore Ambient Air Monitoring Stations
- 4.0 Photochemical Assessment Monitoring Stations (PAMS)
- 5.0 Particulate Matter Episode Monitoring 6.0 References

1.0 Purpose

This appendix specifies the criteria pollutant monitoring methods (manual methods or automated analyzers) which must be used in SLAMS and NCore stations that are a subset of SLAMS.

2.0 SLAMS AMBIENT AIR MONITORING NETWORK

- 2.1 Except as otherwise provided in this appendix, a criteria pollutant monitoring method used for making NAAQS decisions at a SLAMS site must be a reference or equivalent method as defined in §50.1 of this chapter.
- 2.1.1 Any NO₂ FRM or FEM used for making primary NAAQS decisions must be capable of providing hourly averaged concentration data.
 - 2.2 Reserved
- 2.3 Any manual method or analyzer purchased prior to cancellation of its reference or equivalent method designation under §53.11 or §53.16 of this chapter may be used at a SLAMS site following cancellation for a reasonable period of time to be determined by the Administrator.
- 2.4 Approval of Non-designated Continuous PM $_{2.5}$ Methods as Approved Regional Methods (ARMs) Operated Within a Network of Sites. A method for PM $_{2.5}$ that has not been designated as an FRM or FEM as defined in $\S 50.1$ of this chapter may be approved as an ARM for purposes of section 2.1 of this appendix at a particular site or network of sites under the following stipulations.
- 2.4.1 The candidate ARM must be demonstrated to meet the requirements for PM_{2.5} Class III equivalent methods as defined in subpart C of part 53 of this chapter. Specifically the requirements for precision, correlation, and additive and multiplicative bias apply. For purposes of this section 2.4, the following requirements shall apply:
- 2.4.1.1 The candidate ARM shall be tested at the site(s) in which it is intended to be used. For a network of sites operated by one reporting agency or primary quality assurance organization, the testing shall occur at a subset of sites to include one site in each MSA/CSA, up to the first 2 highest population MSA/CSA and at least one rural area or Micropolitan Statistical Area site. If the candidate ARM for a network is already ap-

proved for purposes of this section in another agency's network, subsequent testing shall minimally occur at one site in a MSA/CSA and one rural area or Micropolitan Statistical Area. There shall be no requirement for tests at any other sites.

- 2.4.1.2 For purposes of this section, a full year of testing may begin and end in any season, so long as all seasons are covered.
- 2.4.1.3~ No PM $_{10}$ samplers shall be required for the test, as determination of the PM $_{2.5}\!/$ PM $_{10}$ ratio at the test site shall not be required.
- 2.4.1.4 The test specification for $PM_{2.5}$ Class III equivalent method precision defined in subpart C of part 53 of this chapter applies; however, there is no specific requirement that collocated continuous monitors be operated for purposes of generating a statistic for coefficient of variation (CV). To provide an estimate of precision that meets the requirement identified in subpart C of part 53 of this chapter, agencies may cite peer-reviewed published data or data in AQS that can be presented demonstrating the candidate ARM operated will produce data that meets the specification for precision of Class III $PM_{2.5}$ methods.
- 2.4.1.5 A minimum of 90 valid sample pairs per site for the year with no less than 20 valid sample pairs per season must be generated for use in demonstrating that additive bias, multiplicative bias and correlation meet the comparability requirements specified in subpart C of part 53 of this chapter. A valid sample pair may be generated with as little as one valid FRM and one valid candidate ARM measurement per day.
- 2.4.1.6 For purposes of determining bias, FRM data with concentrations less than 3 micrograms per cubic meter (μ g/m³) may be excluded. Exclusion of data does not result in failure of sample completeness specified in this section.
- 2.4.1.7 Data transformations are allowed to be used to demonstrate meeting the comparability requirements specified in subpart C of part 53 of this chapter. Data transformation may be linear or non-linear, but must be applied in the same way to all sites used in the testing.
- 2.4.2 The monitoring agency wishing to use an ARM must develop and implement appropriate quality assurance procedures for the method. Additionally, the following procedures are required for the method:
- 2.4.2.1 The ARM must be consistently operated throughout the network. Exceptions to a consistent operation must be approved according to section 2.8 of this appendix:
- 2.4.2.2 The ARM must be operated on an hourly sampling frequency capable of providing data suitable for aggregation into daily 24-hour average measurements;

2.4.2.3 The ARM must use an inlet and separation device, as needed, that are already approved in either the reference method identified in appendix L to part 50 of this chapter or under part 53 of this chapter as approved for use on a PM $_{2.5}$ reference or equivalent method. The only exceptions to this requirement are those methods that by their inherent measurement principle may not need an inlet or separation device that segregates the aerosol; and

2.4.2.4 The ARM must be capable of providing for flow audits, unless by its inherent measurement principle, measured flow is not required. These flow audits are to be performed on the frequency identified in appendix A to this part.

2.4.2.5 If data transformations are used, they must be described in the monitoring agencies Quality Assurance Project plan (or addendum to QAPP). The QAPP shall describe how often (e.g., quarterly, yearly) and under what provisions the data transformation will be updated. For example, not meeting the data quality objectives for a site over a season or year may be cause for recalculating a data transformation, but by itself would not be cause for invalidating the data. Data transformations must be applied prospectively, i.e., in real-time or near realtime, to the data output from the PM 2.5 continuous method. See reference 7 of this appendix.

2.4.3 The monitoring agency wishing to use the method must develop and implement appropriate procedures for assessing and reporting the precision and accuracy of the method comparable to the procedures set forth in appendix A of this part for designated reference and equivalent methods.

2.4.4 Assessments of data quality shall follow the same frequencies and calculations as required under section 3 of appendix A to this part with the following exceptions:

2.4.4.1 Collocation of ARM with FRM/FEM samplers must be maintained at a minimum of 30 percent of the required SLAMS sites with a minimum of 1 per network;

2.4.4.2 All collocated FRM/FEM samplers must maintain a sample frequency of at least 1 in 6 sample days;

2.4.4.3 Collocated FRM/FEM samplers shall be located at the design value site, with the required FRM/FEM samplers deployed among the largest MSA/CSA in the network, until all required FRM/FEM are deployed; and

 $2.4.4.\,$ Data from collocated FRM/FEM are to be substituted for any calendar quarter that an ARM method has incomplete data.

2.4.4.5 Collocation with an ARM under this part for purposes of determining the coefficient of variation of the method shall be conducted at a minimum of 7.5 percent of the sites with a minimum of 1 per network. This is consistent with the requirements in appendix A to this part for one-half of the re-

quired collocation of FRM/FEM (15 percent) to be collocated with the same method.

2.4.4.6 Assessments of bias with an independent audit of the total measurement system shall be conducted with the same frequency as an FEM as identified in appendix A to this part.

2.4.5 Request for approval of a candidate ARM, that is not already approved in another agency's network under this section, must meet the general submittal requirements of section 2.7 of this appendix. Requests for approval under this section when an ARM is already approved in another agency's network are to be submitted to the EPA Regional Administrator. Requests for approval under section 2.4 of this appendix must include the following requirements:

2.4.5.1 A clear and unique description of the site(s) at which the candidate ARM will be used and tested, and a description of the nature or character of the site and the particulate matter that is expected to occur there.

2.4.5.2 A detailed description of the method and the nature of the sampler or analyzer upon which it is based.

2.4.5.3 A brief statement of the reason or rationale for requesting the approval.

2.4.5.4 A detailed description of the quality assurance procedures that have been developed and that will be implemented for the method

2.4.5.5 A detailed description of the procedures for assessing the precision and accuracy of the method that will be implemented for reporting to AQS.

2.4.5.6 Test results from the comparability tests as required in section 2.4.1 through 2.4.1.4 of this appendix.

2.4.5.7 Such further supplemental information as may be necessary or helpful to support the required statements and test results.

2.4.6 Within 120 days after receiving a request for approval of the use of an ARM at a particular site or network of sites under section 2.4 of this appendix, the Administrator will approve or disapprove the method by letter to the person or agency requesting such approval. When appropriate for methods that are already approved in another SLAMS network, the EPA Regional Administrator has approval/disapproval authority. In either instance, additional information may be requested to assist with the decision.

2.5 [Reserved]

2.6 Use of Methods With Higher, Nonconforming Ranges in Certain Geographical Areas.

2.6.1 [Reserved]

2.6.2 An analyzer may be used (indefinitely) on a range which extends to concentrations higher than two times the upper limit specified in table B-1 of part 53 of this chapter if:

2.6.2.1 The analyzer has more than one selectable range and has been designated as a reference or equivalent method on at least one of its ranges, or has been approved for use under section 2.5 (which applies to analyzers purchased before February 18, 1975);

2.6.2.2 The pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.2.3 The Administrator determines that the resolution of the range or ranges for which approval is sought is adequate for its intended use. For purposes of this section (2.6), "resolution" means the ability of the analyzer to detect small changes in concentration.

2.6.3 Requests for approval under section 2.6.2 of this appendix must meet the submittal requirements of section 2.7. Except as provided in section 2.7.3 of this appendix, each request must contain the information specified in section 2.7.2 in addition to the following:

2.6.3.1 The range or ranges proposed to be used;

2.6.3.2 Test data, records, calculations, and test results as specified in section 2.7.2.2 of this appendix for each range proposed to be used;

2.6.3.3 An identification and description of the geographical area in which use of the analyzer is proposed;

2.6.3.4 Data or other information demonstrating that the pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.3.5 Test data or other information demonstrating the resolution of each proposed range that is broader than that permitted by section 2.5 of this appendix.

2.6.4 Any person who has obtained approval of a request under this section (2.6.2) shall assure that the analyzer for which approval was obtained is used only in the geographical area identified in the request and only while operated in the range or ranges specified in the request.

 $2.7\,$ Requests for Approval; Withdrawal of Approval.

2.7.1 Requests for approval under sections 2.4, 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For ARM that are already approved in another agency's network, subsequent requests for approval under section 2.4 are to be submitted

to the applicable EPA Regional Administrator.

2.7.2 Except as provided in section 2.7.3 of this appendix, each request must contain:

2.7.2.1 A statement identifying the analyzer (e.g., by serial number) and the method of which the analyzer is representative (e.g., by manufacturer and model number); and

2.7.2.2 Test data, records, calculations, and test results for the analyzer (or the method of which the analyzer is representative) as specified in subpart B, subpart C, or both (as applicable) of part 53 of this chapter.

2.7.3 A request may concern more than one analyzer or geographical area and may incorporate by reference any data or other information known to EPA from one or more of the following:

2.7.3.1 An application for a reference or equivalent method determination submitted to EPA for the method of which the analyzer is representative, or testing conducted by the applicant or by EPA in connection with such an application;

2.7.3.2 Testing of the method of which the analyzer is representative at the initiative of the Administrator under §53.7 of this chapter; or

2.7.3.3 A previous or concurrent request for approval submitted to EPA under this section (2.7).

2.7.4 To the extent that such incorporation by reference provides data or information required by this section (2.7) or by sections 2.4, 2.5, or 2.6 of this appendix, independent data or duplicative information need not be submitted.

2.7.5 After receiving a request under this section (2.7), the Administrator may request such additional testing or information or conduct such tests as may be necessary in his judgment for a decision on the request.

2.7.6 If the Administrator determines, on the basis of any available information, that any of the determinations or statements on which approval of a request under this section was based are invalid or no longer valid, or that the requirements of section 2.4, 2.5, or 2.6, as applicable, have not been met, he/she may withdraw the approval after affording the person who obtained the approval an opportunity to submit information and arguments opposing such action.

2.8 Modifications of Methods by Users.

2.8.1 Except as otherwise provided in this section, no reference method, equivalent method, or ARM may be used in a SLAMS network if it has been modified in a manner that could significantly alter the performance characteristics of the method without prior approval by the Administrator. For purposes of this section, "alternative method" means an analyzer, the use of which has been approved under section 2.4, 2.5, or 2.6 of this appendix or some combination thereof.

2.8.2 Requests for approval under this section (2.8) must meet the submittal requirements of sections 2.7.1 and 2.7.2.1 of this appendix.

2.8.3 Each request submitted under this section (2.8) must include:

2.8.3.1 A description, in such detail as may be appropriate, of the desired modification:

2.8.3.2 A brief statement of the purpose(s) of the modification, including any reasons for considering it necessary or advantageous;

2.8.3.3 A brief statement of belief concerning the extent to which the modification will or may affect the performance characteristics of the method; and

2.8.3.4 Such further information as may be necessary to explain and support the statements required by sections 2.8.3.2 and 2.8.3.3

2.8.4 The Administrator will approve or disapprove the modification by letter to the person or agency requesting such approval within 75 days after receiving a request for approval under this section and any further information that the applicant may be asked to provide.

2.8.5 A temporary modification that could alter the performance characteristics of a reference, equivalent, or ARM may be made without prior approval under this section if the method is not functioning or is malfunctioning, provided that parts necessary for repair in accordance with the applicable operation manual cannot be obtained within 45 days. Unless such temporary modification is later approved under section 2.8.4 of this appendix, the temporarily modified method shall be repaired in accordance with the applicable operation manual as quickly as practicable but in no event later than 4 months after the temporary modification was made, unless an extension of time is granted by the Administrator. Unless and until the temporary modification is approved, air quality data obtained with the method as temporarily modified must be clearly identified as such when submitted in accordance with §58.16 and must be accompanied by a report containing the information specified in section 2.8.3 of this appendix. A request that the Administrator approve a temporary modification may be submitted in accordance with sections 2.8.1 through 2.8.4 of this appendix. In such cases the request will be considered as if a request for prior approval had been made.

2.9 Use of IMPROVE Samplers at a SLAMS Site. "IMPROVE" samplers may be used in SLAMS for monitoring of regional background and regional transport concentrations of fine particulate matter. The IMPROVE samplers were developed for use in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network to characterize all of the major components and many trace constituents of the particulate

matter that impair visibility in Federal Class I Areas. Descriptions of the IMPROVE samplers and the data they collect are available in references 4, 5, and 6 of this appendix.

2.10 Use of Pb-P M_{10} at SLAMS Sites.

2.10.1 The EPA Regional Administrator may approve the use of a Pb-PM $_{10}$ FRM or Pb-PM $_{10}$ FEM sampler in lieu of a Pb-TSP sampler as part of the network plan required under part 58.10(a)(4) in the following cases.

2.10.1.1 Pb-PM $_{10}$ samplers can be approved for use at the non-source-oriented sites required under paragraph 4.5(b) of Appendix D to part 58 if there is no existing monitoring data indicating that the maximum arithmetic 3-month mean Pb concentration (either Pb-TSP or Pb-PM $_{10}$) at the site was equal to or greater than 0.10 micrograms per cubic meter during the previous 3 years.

 $2.10.1.2\,$ Pb-PM $_{10}$ samplers can be approved for use at source-oriented sites required under paragraph 4.5(a) if the monitoring agency can demonstrate (through modeling or historic monitoring data from the last 3 years) that Pb concentrations (either Pb-TSP or Pb-PM $_{10}$) will not equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean and the source is expected to emit a substantial majority of its Pb in the fraction of PM with an aerodynamic diameter of less than or equal to 10 micrometers.

2.10.2 The approval of a Pb-PM $_{10}$ sampler in lieu of a Pb-TSP sampler as allowed for in paragraph 2.10.1 above will be revoked if measured Pb-PM $_{10}$ concentrations equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean. Monitoring agencies will have up to 6 months from the end of the 3-month period in which the arithmetic 3-month Pb-PM $_{10}$ mean concentration equaled or exceeded 0.10 micrograms per cubic meter to install and begin operation of a Pb-TSP sampler at the site.

3.0 NCORE AMBIENT AIR MONITORING STATIONS

3.1 Methods employed in NCore multipollutant sites used to measure SO_2 , CO, NO_2 , O_3 , $PM_{2.5}$, or $PM_{10-2.5}$ must be reference or equivalent methods as defined in §50.1 of this chapter, or an ARM as defined in section 2.4 of this appendix, for any monitors intended for comparison with applicable NAAOS.

3.2 If alternative SO₂, CO, NO₂, O₃, PM_{2.5}, or PM_{10-2.5} monitoring methodologies are proposed for monitors not intended for NAAQS comparison, such techniques must be detailed in the network description required by §58.10 and subsequently approved by the Administrator. Examples of locations that are not intended to be compared to the NAAQS may be rural background and transport sites or areas where the concentration of the pollutant is so low that it would be

more useful to operate a higher sensitivity method that is not an FRM or FEM.

4.0 PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)

- 4.1 Methods used for O_3 monitoring at PAMS must be automated reference or equivalent methods as defined in §50.1 of this chapter.
- $4.2\,$ Methods used for NO, NO₂ and NO_X monitoring at PAMS should be automated reference or equivalent methods as defined for NO₂ in §50.1 of this chapter. If alternative NO, NO₂ or NO_X monitoring methodologies are proposed, such techniques must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.
- 4.3 Methods for meteorological measurements and speciated VOC monitoring are included in the guidance provided in references 2 and 3 of this appendix. If alternative VOC monitoring methodology (including the use of new or innovative technologies), which is not included in the guidance, is proposed, it must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.

5.0 PARTICULATE MATTER EPISODE MONITORING

- $5.1\,$ For short-term measurements of PM $_{10}$ during air pollution episodes (see §51.152 of this chapter) the measurement method must be:
- 5.1.1 Either the "Staggered PM $_{10}$ " method or the "PM $_{10}$ Sampling Over Short Sampling Times" method, both of which are based on the reference method for PM $_{10}$ and are described in reference 1: or
- 5.1.2 Any other method for measuring PM $_{\rm 10}\textsc{:}$
- 5.1.2.1 Which has a measurement range or ranges appropriate to accurately measure air pollution episode concentration of PM $_{10}$.
- 5.1.2.2 Which has a sample period appropriate for short-term $\,PM_{\,10}$ measurements, and
- 5.1.2.3 For which a quantitative relationship to a reference or equivalent method for PM $_{10}$ has been established at the use site. Procedures for establishing a quantitative site-specific relationship are contained in reference 1.
- $5.2~{\rm PM_{10}}$ methods other than the reference method are not covered under the quality assessment requirements of appendix to this part. Therefore, States must develop and implement their own quality assessment procedures for those methods allowed under this section 4. These quality assessment procedures should be similar or analogous to those described in section 3 of appendix A to this part for the PM $_{10}$ reference method.

6.0 References

- 1. Pelton, D. J. Guideline for Particulate Episode Monitoring Methods, GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68-02-3584. EPA 450/4-83-005. February 1983.
- 2. Technical Assistance Document For Sampling and Analysis of Ozone Precursors. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/8-91-215. October 1991.
- 3. Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/4–90–0003. August 1989.
- 4. Eldred, R.Ā., Cahill, T.A., Wilkenson, L.K., et al., Measurements of fine particles and their chemical components in the IM-PROVE/NPS networks, in Transactions of the International Specialty Conference on Visibility and Fine Particles, Air and Waste Management Association: Pittsburgh, PA, 1990; pp. 187–196.
- 5. Sisler, J.F., Huffman, D., and Latimer, D.A.; Spatial and temporal patterns and the chemical composition of the haze in the United States: An analysis of data from the IMPROVE network, 1988–1991, ISSN No. 0737–5253–26, National Park Service, Ft. Collins, CO, 1993.
- 6. Eldred, R.A., Cahill, T.A., Pitchford, M., and Malm, W.C.; IMPROVE—a new remote area particulate monitoring system for visibility studies, Proceedings of the 81st Annual Meeting of the Air Pollution Control Association, Dallas, Paper 88–54.3, 1988.
- 7. Data Quality Objectives (DQOs) for Relating Federal Reference Method (FRM) and Continuous $\rm PM_{2.5}$ Measurements to Report an Air Quality Index (AQI). Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 454/B–02–2002. November 2002.
- [71 FR 61313, Oct. 17, 2006, as amended at 73 FR 67061, Nov. 12, 2008; 75 FR 6534, Feb. 9, 2010]
- APPENDIX D TO PART 58—NETWORK DE-SIGN CRITERIA FOR AMBIENT AIR QUALITY MONITORING
- 1. Monitoring Objectives and Spatial Scales
- 2. General Monitoring Requirements
- 3. Design Criteria for NCore Sites
- 4. Pollutant-Specific Design Criteria for SLAMS Sites
- 5. Design Criteria for Photochemical Assessment Monitoring Stations (PAMS)
- 6. References

more useful to operate a higher sensitivity method that is not an FRM or FEM.

4.0 PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)

- 4.1 Methods used for O_3 monitoring at PAMS must be automated reference or equivalent methods as defined in §50.1 of this chapter.
- 4.2 Methods used for NO, NO_2 and NO_X monitoring at PAMS should be automated reference or equivalent methods as defined for NO_2 in §50.1 of this chapter. If alternative NO, NO_2 or NO_X monitoring methodologies are proposed, such techniques must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.
- 4.3 Methods for meteorological measurements and speciated VOC monitoring are included in the guidance provided in references 2 and 3 of this appendix. If alternative VOC monitoring methodology (including the use of new or innovative technologies), which is not included in the guidance, is proposed, it must be detailed in the network description required by §58.10 and subsequently approved by the Administrator.

5.0 PARTICULATE MATTER EPISODE MONITORING

- $5.1\,$ For short-term measurements of PM $_{10}$ during air pollution episodes (see §51.152 of this chapter) the measurement method must be:
- 5.1.1 Either the "Staggered PM $_{10}$ " method or the "PM $_{10}$ Sampling Over Short Sampling Times" method, both of which are based on the reference method for PM $_{10}$ and are described in reference 1: or
- 5.1.2 Any other method for measuring PM $_{\rm 10}\textsc{:}$
- 5.1.2.1 Which has a measurement range or ranges appropriate to accurately measure air pollution episode concentration of PM $_{\rm 10},$
- 5.1.2.2 Which has a sample period appropriate for short-term $\,{\rm PM}_{\,10}$ measurements, and
- 5.1.2.3 For which a quantitative relationship to a reference or equivalent method for PM $_{10}$ has been established at the use site. Procedures for establishing a quantitative site-specific relationship are contained in reference 1.
- $5.2~PM_{\rm 10}$ methods other than the reference method are not covered under the quality assessment requirements of appendix to this part. Therefore, States must develop and implement their own quality assessment procedures for those methods allowed under this section 4. These quality assessment procedures should be similar or analogous to those described in section 3 of appendix A to this part for the PM $_{\rm 10}$ reference method.

6.0 References

- 1. Pelton, D. J. Guideline for Particulate Episode Monitoring Methods, GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68-02-3584. EPA 450/4-83-005. February 1983
- 2. Technical Assistance Document For Sampling and Analysis of Ozone Precursors. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/8-91-215. October 1991.
- 3. Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/4–90–0003. August 1989.
- 4. Eldred, R.A., Cahill, T.A., Wilkenson, L.K., et al., Measurements of fine particles and their chemical components in the IM-PROVE/NPS networks, in Transactions of the International Specialty Conference on Visibility and Fine Particles, Air and Waste Management Association: Pittsburgh, PA, 1990; pp. 187–196.
- 5. Sisler, J.F., Huffman, D., and Latimer, D.A.; Spatial and temporal patterns and the chemical composition of the haze in the United States: An analysis of data from the IMPROVE network, 1988–1991, ISSN No. 0737–5253–26, National Park Service, Ft. Collins, CO, 1993.
- 6. Eldred, R.A., Cahill, T.A., Pitchford, M., and Malm, W.C.; IMPROVE—a new remote area particulate monitoring system for visibility studies, Proceedings of the 81st Annual Meeting of the Air Pollution Control Association, Dallas, Paper 88–54.3, 1988.
- 7. Data Quality Objectives (DQOs) for Relating Federal Reference Method (FRM) and Continuous PM_{2.5} Measurements to Report an Air Quality Index (AQI). Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 454/B-02-2002. November 2002.
- [71 FR 61313, Oct. 17, 2006, as amended at 73 FR 67061, Nov. 12, 2008; 75 FR 6534, Feb. 9, 2010]
- APPENDIX D TO PART 58—NETWORK DE-SIGN CRITERIA FOR AMBIENT AIR QUALITY MONITORING
- 1. Monitoring Objectives and Spatial Scales
- 2. General Monitoring Requirements
- 3. Design Criteria for NCore Sites
- Pollutant-Specific Design Criteria for SLAMS Sites
- 5. Design Criteria for Photochemical Assessment Monitoring Stations (PAMS)
- 6. References

1. Monitoring Objectives and Spatial Scales

The purpose of this appendix is to describe monitoring objectives and general criteria to be applied in establishing the required SLAMS ambient air quality monitoring stations and for choosing general locations for additional monitoring sites. This appendix also describes specific requirements for the number and location of FRM, FEM, and ARM sites for specific pollutants, NCore multipollutant sites, PM $_{10}$ mass sites, PM $_{2.5}$ mass sites, chemically-speciated PM $_{2.5}$ sites, and $\rm O_3$ precursor measurements sites (PAMS). These criteria will be used by EPA in evaluating the adequacy of the air pollutant monitoring networks.

- 1.1 Monitoring Objectives. The ambient air monitoring networks must be designed to meet three basic monitoring objectives. These basic objectives are listed below. The appearance of any one objective in the order of this list is not based upon a prioritized scheme. Each objective is important and must be considered individually.
- (a) Provide air pollution data to the general public in a timely manner. Data can be presented to the public in a number of attractive ways including through air quality maps, newspapers, Internet sites, and as part of weather forecasts and public advisories.
- (b) Support compliance with ambient air quality standards and emissions strategy development. Data from FRM, FEM, and ARM monitors for NAAQS pollutants will be used for comparing an area's air pollution levels against the NAAQS. Data from monitors of various types can be used in the development of attainment and maintenance plans. SLAMS, and especially NCore station data, will be used to evaluate the regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality. In monitoring locations near major air pollution sources, source-oriented monitoring data can provide insight into how well industrial sources are controlling their pollutant emissions.
- (c) Support for air pollution research studies. Air pollution data from the NCore network can be used to supplement data collected by researchers working on health effects assessments and atmospheric processes, or for monitoring methods development work.
- 1.1.1 In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of types of monitoring sites. Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near spe-

cific sources. To summarize some of these sites, here is a listing of six general site types:

- (a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- (b) Sites located to measure typical concentrations in areas of high population density.
- (c) Sites located to determine the impact of significant sources or source categories on air quality.
- (d) Sites located to determine general background concentration levels.
- (e) Sites located to determine the extent of regional pollutant transport among populated areas; and in support of secondary standards.
- (f) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts.
- 1.1.2 This appendix contains criteria for the basic air monitoring requirements. The total number of monitoring sites that will serve the variety of data needs will be substantially higher than these minimum requirements provide. The optimum size of a particular network involves trade-offs among data needs and available resources. This regulation intends to provide for national air monitoring needs, and to lend support for the flexibility necessary to meet data collection needs of area air quality managers. The EPA, State, and local agencies will periodically collaborate on network design issues through the network assessment process outlined in §58.10.
- 1.1.3 This appendix focuses on the relationship between monitoring objectives, site types, and the geographic location of monitoring sites. Included are a rationale and set of general criteria for identifying candidate site locations in terms of physical characteristics which most closely match a specific monitoring objective. The criteria for more specifically locating the monitoring site, including spacing from roadways and vertical and horizontal probe and path placement, are described in appendix E to this part.
- 1.2 Spatial Scales. (a) To clarify the nature of the link between general monitoring objectives, site types, and the physical location of a particular monitor, the concept of spatial scale of representativeness is defined. The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.
- (b) Thus, spatial scale of representativeness is described in terms of the physical dimensions of the air parcel nearest to a monitoring site throughout which actual pollutant concentrations are reasonably similar.

The scales of representativeness of most interest for the monitoring site types described above are as follows:

- (1) Microscale—Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- (2) Middle scale—Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
- (3) Neighborhood scale—Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and urban scales listed below have the potential to overlap in applications that concern secondarily formed or homogeneously distributed air pollutants.
- (4) Urban scale—Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale
- (5) Regional scale—Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.
- (6) National and global scales—These measurement scales represent concentrations characterizing the nation and the globe as a whole
- (c) Proper siting of a monitor requires specification of the monitoring objective, the types of sites necessary to meet the objective, and then the desired spatial scale of representativeness. For example, consider the case where the objective is to determine NAAQS compliance by understanding the maximum ozone concentrations for an area. Such areas would most likely be located downwind of a metropolitan area, quite likely in a suburban residential area where children and other susceptible individuals are likely to be outdoors. Sites located in these areas are most likely to represent an urban scale of measurement. In this example, physical location was determined by considering ozone precursor emission patterns, public activity, and meteorological characteristics affecting ozone formation and dispersion. Thus, spatial scale of representativeness was not used in the selection process but was a result of site location.
- (d) In some cases, the physical location of a site is determined from joint consideration of both the basic monitoring objective and the type of monitoring site desired, or required by this appendix. For example, to determine PM $_{2.5}$ concentrations which are typical over a geographic area having relatively high PM $_{2.5}$ concentrations, a neighborhood scale site is more appropriate. Such a site would likely be located in a residential or commercial area having a high overall PM $_{2.5}$

emission density but not in the immediate vicinity of any single dominant source. Note that in this example, the desired scale of representativeness was an important factor in determining the physical location of the monitoring site.

- (e) In either case, classification of the monitor by its type and spatial scale of representativeness is necessary and will aid in interpretation of the monitoring data for a particular monitoring objective (e.g., public reporting, NAAQS compliance, or research support).
- (f) Table D-1 of this appendix illustrates the relationship between the various site types that can be used to support the three basic monitoring objectives, and the scales of representativeness that are generally most appropriate for that type of site.

TABLE D-1 OF APPENDIX D TO PART 58—RELA-TIONSHIP BETWEEN SITE TYPES AND SCALES OF REPRESENTATIVENESS

Site type	Appropriate siting scales		
1. Highest concentration	Micro, middle, neighborhood (sometimes urban or regional for secondarily formed pollutants).		
Population oriented Source impact General/background & regional transport.	Neighborhood, urban. Micro, middle, neighborhood. Urban, regional.		
5. Welfare-related impacts	Urban, regional.		

2. General Monitoring Requirements

- (a) The National ambient air monitoring system includes several types of monitoring stations, each targeting a key data collection need and each varying in technical sophistication.
- (b) Research grade sites are platforms for scientific studies, either involved with health or welfare impacts, measurement methods development, or other atmospheric studies. These sites may be collaborative efforts between regulatory agencies and researchers with specific scientific objectives for each. Data from these sites might be collected with both traditional and experimental techniques, and data collection might involve specific laboratory analyses not common in routine measurement programs. The research grade sites are not required by regulation; however, they are included here due to their important role in supporting the air quality management program.
- (c) The NCore multipollutant sites are sites that measure multiple pollutants in order to provide support to integrated air quality management data needs. NCore sites include both neighborhood and urban scale measurements in general, in a selection of metropolitan areas and a limited number of more rural locations. Continuous monitoring

methods are to be used at the NCore sites when available for a pollutant to be measured, as it is important to have data collected over common time periods for integrated analyses. NCore multipollutant sites are intended to be long-term sites useful for a variety of applications including air quality trends analyses, model evaluation, and tracking metropolitan area statistics. As such, the NCore sites should be placed away from direct emission sources that could substantially impact the ability to detect areawide concentrations. The Administrator must approve the NCore sites.

(d) Monitoring sites designated as SLAMS sites, but not as NCore sites, are intended to address specific air quality management interests, and as such, are frequently single-pollutant measurement sites. The EPA Regional Administrator must approve the SLAMS sites.

(e) This appendix uses the statistical-based definitions for metropolitan areas provided by the Office of Management and Budget and the Census Bureau. These areas are referred to as metropolitan statistical areas (MSA). micropolitan statistical areas, core-based statistical areas (CBSA), and combined statistical areas (CSA), A CBSA associated with at least one urbanized area of 50,000 population or greater is termed a Metropolitan Statistical Area (MSA). A CBSA associated with at least one urbanized cluster of at least 10,000 population or greater is termed a Micropolitan Statistical Area. CSA consist of two or more adjacent CBSA. In this appendix, the term MSA is used to refer to a Metropolitan Statistical Area. By definition, both MSA and CSA have a high degree of integration; however, many such areas cross State or other political boundaries. MSA and CSA may also cross more than one air shed. The EPA recognizes that State or local agencies must consider MSA/CSA boundaries and their own political boundaries and geographical characteristics in designing their air monitoring networks. The EPA recognizes that there may be situations where the EPA Regional Administrator and the affected State or local agencies may need to augment or to divide the overall MSA/CSA monitoring responsibilities and requirements among these various agencies to achieve an effective network design. Full monitoring requirements apply separately to each affected State or local agency in the absence of an agreement between the affected agencies and the EPA Regional Administrator.

3. Design Criteria for NCore Sites

(a) Each State (i.e. the fifty States, District of Columbia, Puerto Rico, and the Virgin Islands) is required to operate at least one NCore site. States may delegate this requirement to a local agency. States with

many MSAs often also have multiple air sheds with unique characteristics and, often, elevated air pollution. These States include. at a minimum, California, Florida, Illinois, Michigan, New York, North Carolina, Ohio, Pennsylvania, and Texas. These States are required to identify one to two additional NCore sites in order to account for their unique situations. These additional sites shall be located to avoid proximity to large emission sources. Any State or local agency can propose additional candidate NCore sites or modifications to these requirements for approval by the Administrator. The NCore locations should be leveraged with other multipollutant air monitoring sites including PAMS sites. National Air Toxics Trends Stations (NATTS) sites, CASTNET sites, and STN sites. Site leveraging includes using the same monitoring platform and equipment to meet the objectives of the variety of programs where possible and advantageous.

(b) The NCore sites must measure, at a minimum, $PM_{2.5}$ particle mass using continuous and integrated/filter-based samplers, speciated $PM_{2.5}$, $PM_{10-2.5}$ particle mass, O_3 , SO_2 , CO, NO/NO_Y , wind speed, wind direction, relative humidity, and ambient temperature.

(1) Although the measurement of NO_y is required in support of a number of monitoring objectives, available commercial instruments may indicate little difference in their measurement of NO_y compared to the conventional measurement of NO_x , particularly in areas with relatively fresh sources of nitrogen emissions. Therefore, in areas with negligible expected difference between NO_y and NO_x measured concentrations, the Administrator may allow for waivers that permit NO_x monitoring to be substituted for the required NO_y monitoring at applicable NCore sites

(2) The EPA recognizes that, in some cases, the physical location of the NCore site may not be suitable for representative meteorological measurements due to the site's physical surroundings. It is also possible that nearby meteorological measurements may be able to fulfill this data need. In these cases, the requirement for meteorological monitoring can be waived by the Administrator.

(c) [Reserved]

(d) Siting criteria are provided for urban and rural locations. Sites with significant historical records that do not meet siting criteria may be approved as NCore by the Administrator. Sites with the suite of NCore measurements that are explicitly designed for other monitoring objectives are exempt from these siting criteria (e.g., a near-road-way site).

(1) Urban NCore stations are to be generally located at urban or neighborhood scale to provide representative concentrations of exposure expected throughout the metropolitan area; however, a middle-scale

site may be acceptable in cases where the site can represent many such locations throughout a metropolitan area.

(2) Rural NCore stations are to be located to the maximum extent practicable at a regional or larger scale away from any large local emission source, so that they represent ambient concentrations over an extensive

4. POLLUTANT-SPECIFIC DESIGN CRITERIA FOR SLAMS SITES

4.1 Ozone (O₃) Design Criteria. (a) State, and where appropriate, local agencies must operate O3 sites for various locations depending upon area size (in terms of population and geographic characteristics) and typical peak concentrations (expressed in percentages below, or near the O3 NAAQS). Specific SLAMS O₃ site minimum requirements are included in Table D-2 of this appendix. The NCore sites are expected to complement the O₃ data collection that takes place at singlepollutant SLAMS sites, and both types of sites can be used to meet the network minimum requirements. The total number of O₃ sites needed to support the basic monitoring objectives of public data reporting, air quality mapping, compliance, and understanding O₃-related atmospheric processes will include more sites than these minimum numbers required in Table D-2 of this appendix. The EPA Regional Administrator and the responsible State or local air monitoring agency must work together to design and/or maintain the most appropriate O₃ network to service the variety of data needs in an area.

TABLE D-2 OF APPENDIX D TO PART 58-SLAMS MINIMUM O3 MONITORING REQUIRE-MENTS

MSA population ^{1 2}	Most recent 3- year design value concentrations ≥85% of any O ₃ NAAQS ³	Most recent 3- year design value concentrations <85% of any O ₃ NAAQS 3 4
>10 million	4	2
4-10 million	3	1
350,000-<4 million	2	1
50,000-<350,0005	1	0

(b) Within an O3 network, at least one O3 site for each MSA, or CSA if multiple MSAs are involved, must be designed to record the maximum concentration for that particular metropolitan area. More than one maximum concentration site may be necessary in some areas. Table D-2 of this appendix does not account for the full breadth of additional fac-

tors that would be considered in designing a complete O3 monitoring program for an area. Some of these additional factors include geographic size, population density, complexity of terrain and meteorology, adjacent O3 monitoring programs, air pollution transport from neighboring areas, and measured air quality in comparison to all forms of the O2 NAAQS (i.e., 8-hour and 1-hour forms). Networks must be designed to account for all of these area characteristics. Network designs must be re-examined in periodic network assessments. Deviations from the above O3 requirements are allowed if approved by the EPA Regional Administrator.

(c) The appropriate spatial scales for O₃ sites are neighborhood, urban, and regional. Since O₃ requires appreciable formation time, the mixing of reactants and products occurs over large volumes of air, and this reduces the importance of monitoring small scale spatial variability.

(1) Neighborhood scale—Measurements in this category represent conditions throughout some reasonably homogeneous urban sub-region, with dimensions of a few kilometers. Homogeneity refers to pollutant concentrations. Neighborhood scale data will provide valuable information for developing, testing, and revising concepts and models that describe urban/regional concentration patterns. These data will be useful to the understanding and definition of processes that take periods of hours to occur and hence involve considerable mixing and transport. Under stagnation conditions, a site located in the neighborhood scale may also experience peak concentration levels within a metropolitan area.

(2) Urban scale—Measurement in this scale will be used to estimate concentrations over large portions of an urban area with dimensions of several kilometers to 50 or more kilometers. Such measurements will be used for determining trends, and designing area-wide control strategies. The urban scale sites would also be used to measure high concentrations downwind of the area having the highest precursor emissions.

(3) Regional scale—This scale of measurement will be used to typify concentrations over large portions of a metropolitan area and even larger areas with dimensions of as much as hundreds of kilometers. Such measurements will be useful for assessing the O3 that is transported to and from a metropolitan area, as well as background concentrations. In some situations, particularly when considering very large metropolitan areas with complex source mixtures, regional scale sites can be the maximum concentration location.

(d) EPA's technical guidance documents on O₃ monitoring network design should be used to evaluate the adequacy of each existing O₃ monitor, to relocate an existing site, or to locate any new O3 sites.

¹ Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).

² Population based on latest available census figures.

³ The ozone (O₃) National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.

⁴ These minimum monitoring requirements apply in the absence of a decim velocity.

sence of a design value. ⁵Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

(e) For locating a neighborhood scale site to measure typical city concentrations, a reasonably homogeneous geographical area near the center of the region should be selected which is also removed from the influence of major $NO_{\boldsymbol{X}}$ sources. For an urban scale site to measure the high concentration areas, the emission inventories should be used to define the extent of the area of important nonmethane hydrocarbons and NOv emissions. The meteorological conditions that occur during periods of maximum photochemical activity should be determined. These periods can be identified by examining the meteorological conditions that occur on the highest O3 air quality days. Trajectory analyses, an evaluation of wind and emission patterns on high O3 days, can also be useful in evaluating an O3 monitoring network. In areas without any previous O3 air quality measurements, meteorological and O₃ precursor emissions information would be use-

(f) Once the meteorological and air quality data are reviewed, the prospective maximum concentration monitor site should be selected in a direction from the city that is most likely to observe the highest O3 concentrations, more specifically, downwind during periods of photochemical activity. In many cases, these maximum concentration O3 sites will be located 10 to 30 miles or more downwind from the urban area where maximum O₃ precursor emissions originate. The downwind direction and appropriate distance should be determined from historical meteorological data collected on days which show the potential for producing high O3 levels. Monitoring agencies are to consult with their EPA Regional Office when considering siting a maximum O_3 concentration site.

(g) In locating a neighborhood scale site which is to measure high concentrations, the same procedures used for the urban scale are followed except that the site should be located closer to the areas bordering on the center city or slightly further downwind in an area of high density population.

(h) For regional scale background monitoring sites, similar meteorological analysis as for the maximum concentration sites may also inform the decisions for locating regional scale sites. Regional scale sites may be located to provide data on O₃ transport between cities, as background sites, or for other data collection purposes. Consideration of both area characteristics, such as meteorology, and the data collection objectives, such as transport, must be jointly considered for a regional scale site to be useful.

(i) Ozone monitoring is required at SLAMS monitoring sites only during the seasons of the year that are conducive to O_3 formation (i.e., "ozone season") as described below in Table D-3 of this appendix. These O_3 seasons are also identified in the AQS files on a state-by-state basis. Deviations from the O_3

monitoring season must be approved by the EPA Regional Administrator, These requests will be reviewed by Regional Administrators taking into consideration, at a minimum, the frequency of out-of-season O3 NAAQS exceedances, as well as occurrences of the Moderate air quality index level, regional consistency, and logistical issues such as site access. Any deviations based on the Regional Administrator's waiver of requirements must be described in the annual monitoring network plan and updated in AQS. Changes to the O₃ monitoring season requirements in Table D-3 revoke all previously approved Regional Administrator waivers. Requests for monitoring season deviations must be accompanied by relevant supporting information. Information on how to analyze O3 data to support a change to the O₃ season in support of the 8-hour standard for the entire network in a specific state can be found in reference 8 to this appendix. Ozone monitors at NCore stations are required to be operated year-round (January to December).

TABLE D—3 1 TO APPENDIX D OF PART 58.

OZONE MONITORING SEASON BY STATE

State	Begin Month	End Month
Alabama	March	October.
Alaska	April	October.
Arizona	January	December.
Arkansas	March	November.
California	January	December.
Colorado	January	December.
Connecticut	March	September.
Delaware	March	October.
District of Columbia	March	October.
Florida	January	December.
Georgia	March	October.
Hawaii	January	December.
Idaho	April	September.
Illinois	March	October.
Indiana	March	October.
lowa	March	October.
Kansas	March	October.
Kentucky	March	October.
Louisiana (Northern) AQCR 019, 022.	March	October.
Louisiana (Southern) AQCR 106.	January	December.
Maine	April	September.
Maryland	March	October.
Massachusetts	March	September.
Michigan	March	October.
Minnesota	March	October.
Mississippi	March	October.
Missouri	March	October.
Montana	April	September.
Nebraska	March	October.
Nevada	January	December.
New Hampshire	March	September.
New Jersey	March	October.
New Mexico	January	December.
New York	March	October.
North Carolina	March	October.
North Dakota	March	September.
Ohio	March	October.
Oklahoma	March	November.
Oregon	May	September.
Pennsylvania	March	October.

TABLE D-3 ¹ TO APPENDIX D OF PART 58.

OZONE MONITORING SEASON BY STATE—Continued

State	Begin Month	End Month
Puerto Rico	January	December. September. October. October. October. November.
022, 210, 211, 212, 215, 217, 218. Texas (Southern) AQCR 106, 153, 213, 214, 216.	January	December.
Utah	January	December.
Vermont	April	September.
Virginia	March	October.
Washington	May	September.
West Virginia	March	October.
Wisconsin	March	October 15.
Wyoming	January	September.
American Samoa	January	December.
Guam	January	December.
Virgin Islands	January	December.

 $^{1}\mbox{The}$ required O_{3} monitoring season for NCore stations is January through December.

4.2 Carbon Monoxide (CO) Design Criteria

 $4.2.1\,$ General Requirements. (a) Except as provided in subsection (b), one CO monitor is required to operate collocated with one required near-road NO_2 monitor, as required in Section 4.3.2 of this part, in CBSAs having a population of 1,000,000 or more persons. If a CBSA has more than one required near-road NO_2 monitor, only one CO monitor is required to be collocated with a near-road NO_2 monitor within that CBSA.

(b) If a state provides quantitative evidence demonstrating that peak ambient CO concentrations would occur in a near-road location which meets microscale siting criteria in Appendix E of this part but is not a near-road NO₂ monitoring site, then the EPA Regional Administrator may approve a request by a state to use such an alternate near-road location for a CO monitor in place of collocating a monitor at near-road NO₂ monitoring site.

4.2.2 Regional Administrator Required Monitoring. (a) The Regional Administrators, in collaboration with states, may require additional CO monitors above the minimum number of monitors required in 4.2.1 of this part, where the minimum monitoring requirements are not sufficient to meet monitoring objectives. The Regional Administrator may require, at his/her discretion, additional monitors in situations where data or other information suggest that CO concentrations may be approaching or exceeding the NAAQS, Such situations include, but are not limited to, (1) characterizing impacts on ground-level concentrations due to stationary CO sources, (2) characterizing CO concentrations in downtown areas or urban

street canyons, and (3) characterizing CO concentrations in areas that are subject to high ground level CO concentrations particularly due to or enhanced by topographical and meteorological impacts. The Regional Administrator and the responsible State or local air monitoring agency shall work together to design and maintain the most appropriate CO network to address the data needs for an area, and include all monitors under this provision in the annual monitoring network plan.

4.2.3 CO Monitoring Spatial Scales. (a) Microscale and middle scale measurements are the most useful site classifications for CO monitoring sites since most people have the potential for exposure on these scales. Carbon monoxide maxima occur primarily in areas near major roadways and intersections with high traffic density and often in areas with poor atmospheric ventilation.

(1) Microscale—Microscale measurements typically represent areas in close proximity to major roadways, within street canyons, over sidewalks, and in some cases, point and area sources. Emissions on roadways result in high ground level CO concentrations at the microscale, where concentration gradients generally exhibit a marked decrease with increasing downwind distance from major roads, or within downtown areas including urban street canyons. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level concentrations at the microscale.

(2) Middle scale—Middle scale measurements are intended to represent areas with dimensions from 100 meters to 0.5 kilometer. In certain cases, middle scale measurements may apply to areas that have a total length of several kilometers, such as "line" emission source areas. This type of emission sources areas would include air quality along a commercially developed street or shopping plaza, freeway corridors, parking lots and feeder streets.

(3) Neighborhood scale—Neighborhood scale measurements are intended to represent areas with dimensions from 0.5 kilometers to 4 kilometers, Measurements of CO in this would represent conditions category throughout some reasonably urban sub-regions. In some cases, neighborhood scale data may represent not only the immediate neighborhood spatial area, but also other similar such areas across the larger urban area. Neighborhood scale measurements provide relative area-wide concentration data which are useful for providing relative urban background concentrations. supporting health and scientific research, and for use in modeling.

- 4.3 Nitrogen Dioxide (NO₂) Design Criteria
- 4.3.1 General Requirements

- (a) State and, where appropriate, local agencies must operate a minimum number of required NO_2 monitoring sites as described below.
- 4.3.2 Requirement for Near-road NO_2 Monitors
- (a) Within the NO₂ network, there must be one microscale near-road NO2 monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected maximum hourly concentrations sited near a major road with high AADT counts as specified in paragraph 4.3.2(a)(1) of this appendix. An additional near-road NO₂ monitoring station is required for any CBSA with a population of 2,500,000 persons or more, or in any CBSA with a population of 1,000,000 or more persons that has one or more roadway segments with 250,000 or greater AADT counts to monitor a second location of expected maximum hourly concentrations. CBSA populations shall be based on the latest available census figures.
- (1) The near-road NO2 monitoring sites shall be selected by ranking all road segments within a CBSA by AADT and then identifying a location or locations adjacent to those highest ranked road segments, considering fleet mix, roadway design, congestion patterns, terrain, and meteorology, where maximum hourly NO₂ concentrations are expected to occur and siting criteria can be met in accordance with appendix E of this part. Where a state or local air monitoring agency identifies multiple acceptable candidate sites where maximum hourly NO2 concentrations are expected to occur, the monitoring agency shall consider the potential for population exposure in the criteria utilized to select the final site location. Where one CBSA is required to have two near-road NO₂ monitoring stations, the sites shall be differentiated from each other by one or more of the following factors: fleet mix; congestion patterns; terrain; geographic area within the CBSA; or different route, interstate, or freeway designation.
- (b) Measurements at required near-road NO_2 monitor sites utilizing chemiluminescence FRMs must include at a minimum: NO, NO_2 , and NO_X .
- 4.3.3 Requirement for Area-wide NO_2 Monitoring
- (a) Within the NO₂ network, there must be one monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected highest NO₂ concentrations representing the neighborhood or larger spatial scales. PAMS sites collecting NO₂ data that are situated in an area of expected high NO₂ concentrations at the neighborhood or larger spatial scale may be used to satisfy this minimum monitoring requirement when the NO₂ monitor is operated year round. Emission inventories and meteorological analysis should be used to identify the appropriate locations within a CBSA for

- locating required area-wide NO₂ monitoring stations. CBSA populations shall be based on the latest available census figures.
- 4.3.4 Regional Administrator Required Monitoring
- (a) The Regional Administrators, in collaboration with States, must require a minimum of forty additional NO₂ monitoring stations nationwide in any area, inside or outside of CBSAs, above the minimum monitoring requirements, with a primary focus on siting these monitors in locations to protect susceptible and vulnerable populations. The Regional Administrators, working with States, may also consider additional factors described in paragraph (b) below to require monitors beyond the minimum network requirement.
- (b) The Regional Administrators may require monitors to be sited inside or outside of CBSAs in which:
- (i) The required near-road monitors do not represent all locations of expected maximum hourly NO_2 concentrations in an area and NO_2 concentrations may be approaching or exceeding the NAAQS in that area;
- (ii) Areas that are not required to have a monitor in accordance with the monitoring requirements and NO₂ concentrations may be approaching or exceeding the NAAQS; or
- (iii) The minimum monitoring requirements for area-wide monitors are not sufficient to meet monitoring objectives.
- (c) The Regional Administrator and the responsible State or local air monitoring agency should work together to design and/or maintain the most appropriate NO₂ network to address the data needs for an area, and include all monitors under this provision in the annual monitoring network plan.
- 4.3.5 NO₂ Monitoring Spatial Scales
- (a) The most important spatial scale for near-road NO_2 monitoring stations to effectively characterize the maximum expected hourly NO_2 concentration due to mobile source emissions on major roadways is the microscale. The most important spatial scales for other monitoring stations characterizing maximum expected hourly NO_2 concentrations are the microscale and middle scale. The most important spatial scale for area-wide monitoring of high NO_2 concentrations is the neighborhood scale.
- (1) Microscale—This scale represents areas in close proximity to major roadways or point and area sources. Emissions from roadways result in high ground level NO₂ concentrations at the microscale, where concentration gradients generally exhibit a marked decrease with increasing downwind distance from major roads. As noted in appendix E of this part, near-road NO₂ monitoring stations are required to be within 50 meters of target road segments in order to measure expected peak concentrations. Emissions from stationary point and area sources, and non-road sources may, under

certain plume conditions, result in high ground level concentrations at the microscale. The microscale typically represents an area impacted by the plume with dimensions extending up to approximately 100 meters.

- (2) Middle scale—This scale generally represents air quality levels in areas up to several city blocks in size with dimensions on the order of approximately 100 meters to 500 meters. The middle scale may include locations of expected maximum hourly concentrations due to proximity to major NO_2 point, area, and/or non-road sources.
- (3) Neighborhood scale—The neighborhood scale represents air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Emissions from stationary point and area sources may, under certain plume conditions, result in high NO₂ concentrations at the neighborhood scale. Where a neighborhood site is located away from immediate NO₂ sources, the site may be useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.
- (4) Urban scale—Measurements in this scale would be used to estimate concentrations over large portions of an urban area with dimensions from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Urban scale sites may also support other monitoring objectives of the NO₂ monitoring network identified in paragraph 4.3.4 above.

4.3.6 NO_y Monitoring

(a) NO/NO₂ measurements are included within the NCore multi-pollutant site requirements and the PAMS program. These NO/NO₂ measurements will produce conservative estimates for NO₂ that can be used to ensure tracking continued compliance with the NO₂ NAAQS. NO/NO₂ monitors are used at these sites because it is important to collect data on total reactive nitrogen species for understanding O₃ photochemistry.

4.4 Sulfur Dioxide (SO2) Design Criteria.

- 4.4.1 General Requirements. (a) State and, where appropriate, local agencies must operate a minimum number of required SO_2 monitoring sites as described below.
- 4.4.2 Requirement for Monitoring by the Population Weighted Emissions Index. (a) The population weighted emissions index (PWEI) shall be calculated by States for each core based statistical area (CBSA) they contain or share with another State or States for use in the implementation of or adjustment to the $\rm SO_2$ monitoring network. The PWEI shall be calculated by multiplying the population of each CBSA, using the most current census data or estimates, and the total amount of

SO₂ in tons per year emitted within the CBSA area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory for each county in each CBSA. The resulting product shall be divided by one million, providing a PWEI value, the units of which are million persons-tons per year. For any CBSA with a calculated PWEI value equal to or greater than 1.000.000, a minimum of three SO₂ monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 100,000, but less than 1,000,000, a minimum of two SO2 monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 5,000, but less than 100,000, a minimum of one SO₂ monitor is required within that CBSA.

- (1) The SO_2 monitoring site(s) required as a result of the calculated PWEI in each CBSA shall satisfy minimum monitoring requirements if the monitor is sited within the boundaries of the parent CBSA and is one of the following site types (as defined in section 1.1.1 of this appendix): population exposure, highest concentration, source impacts, general background, or regional transport. SO2 monitors at NCore stations may satisfy minimum monitoring requirements if that monitor is located within a CBSA with minimally required monitors under this part. Any monitor that is sited outside of a CBSA with minimum monitoring requirements to assess the highest concentration resulting from the impact of significant sources or source categories existing within that CBSA shall be allowed to count towards minimum monitoring requirements for that CBSA.
- 4.4.3 Regional Administrator Required Monitoring. (a) The Regional Administrator may require additional SO₂ monitoring stations above the minimum number of monitors required in 4.4.2 of this part, where the minimum monitoring requirements are not sufficient to meet monitoring objectives. The Regional Administrator may require, at his/her discretion, additional monitors in situations where an area has the potential to have concentrations that may violate or contribute to the violation of the NAAQS, in areas impacted by sources which are not conducive to modeling, or in locations with susceptible and vulnerable populations, which are not monitored under the minimum monitoring provisions described above. The Regional Administrator and the responsible State or local air monitoring agency shall work together to design and/or maintain the most appropriate SO2 network to provide sufficient data to meet monitoring objectives.
- 4.4.4 SO₂ Monitoring Spatial Scales. (a) The appropriate spatial scales for SO₂ SLAMS monitors are the microscale, middle, neighborhood, and urban scales. Monitors sited at the microscale, middle, and neighborhood

scales are suitable for determining maximum hourly concentrations for SO_2 . Monitors sited at urban scales are useful for identifying SO_2 transport, trends, and, if sited upwind of local sources, background concentrations.

- (1) Microscale—This scale would typify areas in close proximity to SO_2 point and area sources. Emissions from stationary point and area sources, and non-road sources may, under certain plume conditions, result in high ground level concentrations at the microscale. The microscale typically represents an area impacted by the plume with dimensions extending up to approximately 100 meters.
- (2) Middle scale—This scale generally represents air quality levels in areas up to several city blocks in size with dimensions on the order of approximately 100 meters to 500 meters. The middle scale may include locations of expected maximum short-term concentrations due to proximity to major SO_2 point, area, and/or non-road sources.
- (3) Neighborhood scale—The neighborhood scale would characterize air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Emissions from stationary point and area sources may, under certain plume conditions, result in high SO₂ concentrations at the neighborhood scale. Where a neighborhood site is located away from immediate SO₂ sources, the site may be useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.
- (4) Urban scale—Measurements in this scale would be used to estimate concentrations over large portions of an urban area with dimensions from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Urban scale sites may also support other monitoring objectives of the SO₂ monitoring network such as identifying trends, and when monitors are sited upwind of local sources, background concentrations.
- 4.4.5 NCore Monitoring. (a) SO₂ measurements are included within the NCore multipollutant site requirements as described in paragraph (3)(b) of this appendix. NCorebased SO₂ measurements are primarily used to characterize SO₂ trends and assist in understanding SO₂ transport across representative areas in urban or rural locations and are also used for comparison with the SO₂ NAAQS. SO₂ monitors at NCore sites that exist in CBSAs with minimum monitoring requirements per section 4.4.2 above shall be allowed to count towards those minimum monitoring requirements.
- 4.5 Lead (Pb) Design Criteria. (a) State and, where appropriate, local agencies are re-

quired to conduct ambient air Pb monitoring near Pb sources which are expected to or have been shown to contribute to a maximum Pb concentration in ambient air in excess of the NAAQS, taking into account the logistics and potential for population exposure. At a minimum, there must be one source-oriented SLAMS site located to measure the maximum Pb concentration in ambient air resulting from each non-airport Pb source which emits 0.50 or more tons per year and from each airport which emits 1.0 or more tons per year based on either the most recent National Emission Inventory (http://www.epa.gov/ttn/chief/

eiinformation.html) or other scientifically justifiable methods and data (such as improved emissions factors or site-specific data) taking into account logistics and the potential for population exposure.

- (i) One monitor may be used to meet the requirement in paragraph 4.5(a) for all sources involved when the location of the maximum Pb concentration due to one Pb source is expected to also be impacted by Pb emissions from a nearby source (or multiple sources). This monitor must be sited, taking into account logistics and the potential for population exposure, where the Pb concentration from all sources combined is expected to be at its maximum.
- (ii) The Regional Administrator may waive the requirement in paragraph 4.5(a) for monitoring near Pb sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50 percent of the NAAQS (based on historical monitoring data, modeling, or other means). The waiver must be renewed once every 5 years as part of the network assessment required under §58.10(d).
- (iii) State and, where appropriate, local agencies are required to conduct ambient air Pb monitoring near each of the airports listed in Table D-3A for a period of 12 consecutive months commencing no later than December 27, 2011. Monitors shall be sited to measure the maximum Pb concentration in ambient air, taking into account logistics and the potential for population exposure, and shall use an approved Pb-TSP Federal Reference Method or Federal Equivalent Method. Any monitor that exceeds 50 percent of the Pb NAAQS on a rolling 3-month average (as determined according to 40 CFR part 50, Appendix R) shall become a required monitor under paragraph 4.5(c) of this Appendix, and shall continue to monitor for Pb unless a waiver is granted allowing it to stop operating as allowed by the provisions in paragraph 4.5(a)(ii) of this appendix. Data collected shall be submitted to the Air Quality System database according to the requirements of 40 CFR part 58.16.

TABLE D-3A AIRPORTS TO BE MONITORED FOR LEAD

Airport	County	State
Merrill Field Pryor Field Regional Palo Alto Airport of Santa Clara County.	Anchorage Limestone Santa Clara	AK AL CA
McClellan-Palomar Reid-Hillview Gillespie Field San Carlos Nantucket Memorial Oakland County International Republic Brookhaven Stinson Municipal	San Diego Santa Clara San Diego San Mateo Nantucket Oakland Suffolk Suffolk	CA CA CA CA MA MI NY NY
Northwest Regional	Denton Snohomish King	TX WA WA

- (b) [Reserved]
- (c) The EPA Regional Administrator may require additional monitoring beyond the minimum monitoring requirements contained in paragraph 4.5(a) of this appendix where the likelihood of Pb air quality violations is significant or where the emissions density, topography, or population locations are complex and varied. The EPA Regional Administrators may require additional monitoring at locations including, but not limited to, those near existing additional industrial sources of Pb, airports where piston-engine aircraft emit Pb, and other sources of re-entrained Pb dust.
- (d) The most important spatial scales for source-oriented sites to effectively characterize the emissions from point sources are microscale and middle scale. The most important spatial scale for non-source-oriented sites to characterize typical lead concentrations in urban areas is the neighborhood scale. Monitor siting should be conducted in accordance with 4.5(a)(i) with respect to source-oriented sites.
- (1) Microscale—This scale would typify areas in close proximity to lead point sources. Emissions from point sources such as primary and secondary lead smelters, and primary copper smelters may under fumigation conditions likewise result in high ground level concentrations at the microscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 meters. Pb monitors in areas where the public has access, and particularly children have access, are desirable because of

the higher sensitivity of children to exposures of elevated Pb concentrations.

- (2) Middle scale—This scale generally represents Pb air quality levels in areas up to several city blocks in size with dimensions on the order of approximately 100 meters to 500 meters. The middle scale may for example, include schools and playgrounds in center city areas which are close to major Pb point sources. Pb monitors in such areas are desirable because of the higher sensitivity of children to exposures of elevated Pb concentrations (reference 3 of this appendix). Emissions from point sources frequently impact on areas at which single sites may be located to measure concentrations representing middle spatial scales.
- (3) Neighborhood scale—The neighborhood scale would characterize air quality conditions throughout some relatively uniform land use areas with dimensions in the 0.5 to 4.0 kilometer range. Sites of this scale would provide monitoring data in areas representing conditions where children live and play. Monitoring in such areas is important since this segment of the population is more susceptible to the effects of Pb. Where a neighborhood site is located away from immediate Pb sources, the site may be very useful in representing typical air quality values for a larger residential area, and therefore suitable for population exposure and trends analyses.
- (d) Technical guidance is found in references 4 and 5 of this appendix. These documents provide additional guidance on locating sites to meet specific urban area monitoring objectives and should be used in locating new sites or evaluating the adequacy of existing sites.
- 4.6 Particulate Matter (PM 10) Design Criteria.≤(a) Table D-4 indicates the approximate number of permanent stations required in MSAs to characterize national and regional PM_{10} air quality trends and geographical patterns. The number of PM 10 stations in areas where MSA populations exceed 1,000,000 must be in the range from 2 to 10stations, while in low population urban areas, no more than two stations are required. A range of monitoring stations is specified in Table D-4 because sources of pollutants and local control efforts can vary from one part of the country to another and therefore, some flexibility is allowed in selecting the actual number of stations in any one locale. Modifications from these PM_{10} monitoring requirements must be approved by the Regional Administrator.

Table D-4 of Appendix D to Part 58—PM $_{10}$ Minimum Monitoring Requirements (Approximate Number of Stations Per MSA) 1

Population category	High concentra-	Medium con-	Low concentra-
	tion ²	centration ³	tion 4 5
>1.000.000	6–10	4–8	2–4

TABLE D-4 OF APPENDIX D TO PART 58-PM 10 MINIMUM MONITORING REQUIREMENTS (APPROXIMATE NUMBER OF STATIONS PER MSA) 1—Continued

Population category	High concentra-	Medium con-	Low concentra-
	tion ²	centration ³	tion ^{4 5}
500,000-1,000,000	4–8	2–4	1–2
250,000-500,000	3–4	1–2	0–1
100,000-250,000	1–2	0–1	0

¹ Selection of urban areas and actual numbers of stations per area will be jointly determined by EPA and the State agency.
² High concentration areas are those for which ambient PM10 data show ambient concentrations exceeding the PM₁₀ NAAQS by 20 percent or more.
³ Medium concentration areas are those for which ambient PM10 data show ambient concentrations exceeding 80 percent of

the PM _{In} NAAQS.

⁴Low concentration areas are those for which ambient PM10 data show ambient concentrations less than 80 percent of the PM _{In} NAAQS.

⁵These minimum monitoring requirements apply in the absence of a design value.

- (b) Although microscale monitoring may be appropriate in some circumstances, the most important spatial scales to effectively characterize the emissions of PM 10 from both mobile and stationary sources are the middle scales and neighborhood scales.
- (1) Microscale—This scale would typify areas such as downtown street canyons, traffic corridors, and fence line stationary source monitoring locations where the general public could be exposed to maximum PM₁₀ concentrations. Microscale particulate matter sites should be located near inhabited buildings or locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground level concentrations atmicroscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 meters. Data collected at microscale sites provide information for evaluating and developing hot spot control measures
- (2) Middle scale—Much of the short-term public exposure to coarse fraction particles (PM₁₀) is on this scale and on the neighborhood scale. People moving through downtown areas or living near major roadways or stationary sources, may encounter particulate pollution that would be adequately characterized by measurements of this spatial scale. Middle scale PM_{10} measurements can be appropriate for the evaluation of possible short-term exposure public health effects. In many situations, monitoring sites that are representative of micro-scale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a neighborhood of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas

- with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings. In the case of PM 10, unpaved or seldomly swept parking lots associated with these sources could be an important source in addition to the vehicular emissions themselves.
- (3) Neighborhood scale-Measurements in this category represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. In some cases, a location carefully chosen to provide neighborhood scale data would represent not only the immediate neighborhood but also neighborhoods of the same type in other parts of the city. Neighborhood scale PM $_{10}$ sites provide information about trends and compliance with standards because they often represent conditions in areas where people commonly live and work for extended periods. Neighborhood scale data could provide valuable information for developing, testing, and revising models that describe the larger-scale concentration patterns, especially those models relying on spatially smoothed emission fields for inputs. The neighborhood scale measurements could also be used for neighborhood comparisons within or between cities.
- 4.7 Fine Particulate Matter (PM $_{2.5}$) Design Criteria.
- 4.7.1 General Requirements, (a) State, and where applicable local, agencies must operate the minimum number of required PM25 SLAMS sites listed in Table D-5 of this appendix. The NCore sites are expected to complement the PM_{2.5} data collection that takes place at non-NCore SLAMS sites, and both types of sites can be used to meet the minimum PM25 network requirements. Deviations from these PM_{2.5} monitoring requirements must be approved by the EPA Regional Administrator.

TABLE D-5 OF APPENDIX D TO PART 58-PM 2.5 MINIMUM MONITORING REQUIREMENTS

MSA population ^{1 2}	Most recent 3- year design value ≥85% of any PM _{2.5} NAAQS ³	Most recent 3- year design value <85% of any PM _{2.5} NAAQS ^{3 4}
>1,000,000	3	2
500,000–1,000,000	2	1
50,000–<500,000 ⁵	1	0

¹ Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).
 ² Population based on latest available census figures.
 ³ The PM₂₅ National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.
 ⁴ These minimum monitoring requirements apply in the absence of a design value.

sence of a design value.

⁵ Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population

(b) Specific Design Criteria for PM 2.5. The required monitoring stations or sites must be sited to represent area-wide air quality. These sites can include sites collocated at PAMS. These monitoring stations will typically be at neighborhood or urban-scale: however, micro-or middle-scale PM₂₅ monitoring sites that represent many such locations throughout a metropolitan area are considered to represent area-wide air quality.

(1) At least one monitoring station is to be sited at neighborhood or larger scale in an area of expected maximum concentration.

(2) For CBSAs with a population of 1,000,000 or more persons, at least one $PM_{2.5}$ monitor is to be collocated at a near-road NO2 station required in section 4.3.2(a) of this appendix.

(3) For areas with additional required SLAMS, a monitoring station is to be sited in an area of poor air quality.

(4) Additional technical guidance for siting PM_{2.5} monitors is provided in references 6 and 7 of this appendix.

(c) The most important spatial scale to effectively characterize the emissions of particulate matter from both mobile and stationary sources is the neighborhood scale for PM_{2.5}. For purposes of establishing monitoring sites to represent large homogenous areas other than the above scales of representativeness and to characterize regional transport, urban or regional scale sites would also be needed. Most PM 2.5 monitoring in urban areas should be representative of a neighborhood scale.

(1) Micro-scale. This scale would typify areas such as downtown street canyons and traffic corridors where the general public would be exposed to maximum concentrations from mobile sources. In some circumstances, the micro-scale is appropriate for particulate sites. SLAMS sites measured at the micro-scale level should, however, be limited to urban sites that are representative of long-term human exposure and of many such microenvironments in the area. In general, micro-scale particulate matter sites should be located near inhabited buildings or locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the latter case, the micro-scale would represent an area impacted by the plume with dimensions extending up to approximately 100 meters. Data collected at micro-scale sites provide information for evaluating and developing hot spot control measures.

(2) Middle scale—People moving through downtown areas, or living near major roadways, encounter particle concentrations that would be adequately characterized by this spatial scale. Thus, measurements of this type would be appropriate for the evaluation of possible short-term exposure public health effects of particulate matter pollution. In many situations, monitoring sites that are representative of microscale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a number of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings.

(3) Neighborhood scale—Measurements in this category would represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. Much of the PM 2.5 exposures are expected to be associated with this scale of measurement. In some cases, a location carefully chosen to provide neighborhood scale data would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. PM₂₅ sites of this kind provide good information about trends and compliance with standards because they often represent conditions in areas where people commonly live and work for periods comparable to those specified in the NAAQS. In general, most PM_{2.5} monitoring in urban areas should have this scale.

(4) Urban scale—This class of measurement would be used to characterize the particulate matter concentration over an entire metropolitan or rural area ranging in size from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of

large scale air pollution control strategies. Community-oriented ${\rm PM}_{2.5}$ sites may have this scale.

(5) Regional scale—These measurements would characterize conditions over areas with dimensions of as much as hundreds of kilometers. As noted earlier, using representative conditions for an area implies some degree of homogeneity in that area. For this reason, regional scale measurements would be most applicable to sparsely populated areas. Data characteristics of this scale would provide information about larger scale processes of particulate matter emissions, losses and transport. PM_{2.5} transport contributes to elevated particulate concentrations and may affect multiple urban and State entities with large populations such as in the eastern United States. Development of effective pollution control strategies requires an understanding at regional geographical scales of the emission sources and atmospheric processes that are responsible for elevated PM_{2.5} levels and may also be associated with elevated O3 and regional

4.7.2 Requirement for Continuous PM $_{2.5}$ Monitoring. The State, or where appropriate, local agencies must operate continuous PM₂₅ analyzers equal to at least one-half (round up) the minimum required sites listed in Table D-5 of this appendix. At least one required continuous analyzer in each MSA must be collocated with one of the required FRM/FEM/ARM monitors, unless at least one of the required FRM/FEM/ARM monitors is itself a continuous FEM or ARM monitor in which case no collocation requirement applies. State and local air monitoring agencies must use methodologies and quality assurance/quality control (QA/QC) procedures approved by the EPA Regional Administrator for these required continuous ana-

4.7.3 Requirement for PM_{2.5} Background and Transport Sites. Each State shall install and operate at least one PM 2.5 site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport. These monitoring sites may be at community-oriented sites and this requirement may be satisfied by a corresponding monitor in an area having similar air quality in another State. State and local air monitoring agencies must use methodologies and QA/QC procedures approved by the EPA Regional Administrator for these sites. Methods used at these sites may include non-federal reference method samplers such as IMPROVE or continuous PM $_{2.5}$ monitors.

 $4.7.4~\mathrm{PM}_{2.5}$ Chemical Speciation Site Requirements. Each State shall continue to conduct chemical speciation monitoring and analyses at sites designated to be part of the $\mathrm{PM}_{2.5}$ Speciation Trends Network (STN). The selection and modification of these STN sites must be approved by the Adminis-

trator. The PM $_{2.5}$ chemical speciation urban trends sites shall include analysis for elements, selected anions and cations, and carbon. Samples must be collected using the monitoring methods and the sampling schedules approved by the Administrator. Chemical speciation is encouraged at additional sites where the chemically resolved data would be useful in developing State implementation plans and supporting atmospheric or health effects related studies.

4.8 Coarse Particulate Matter $(PM_{10-2.5})$ Design Criteria.

4.8.1 General Monitoring Requirements. (a) The only required monitors for PM $_{10-2.5}$ are those required at NCore Stations.

(b) Although microscale monitoring may be appropriate in some circumstances, middle and neighborhood scale measurements are the most important station classifications for PM $_{10-2.5}$ to assess the variation in coarse particle concentrations that would be expected across populated areas that are in proximity to large emissions sources.

(1) Microscale—This scale would typify relatively small areas immediately adjacent to: Industrial sources; locations experiencing ongoing construction, redevelopment, and soil disturbance; and heavily traveled roadways. Data collected at microscale stations would characterize exposure over areas of limited spatial extent and population exposure, and may provide information useful for evaluating and developing source-oriented control measures.

(2) Middle scale—People living or working near major roadways or industrial districts encounter particle concentrations that would be adequately characterized by this spatial scale. Thus, measurements of this type would be appropriate for the evaluation of public health effects of coarse particle exposure. Monitors located in populated areas that are nearly adjacent to large industrial point sources of coarse particles provide suitable locations for assessing maximum population exposure levels and identifying areas of potentially poor air quality. Similarly, monitors located in populated areas that border dense networks of heavily-traveled traffic are appropriate for assessing the impacts of resuspended road dust. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as school grounds and parks that are nearly adjacent to major roadways and industrial point sources, locations exhibiting mixed residential and commercial development, and downtown areas featuring office buildings, shopping centers, and stadiums.

(3) Neighborhood scale—Measurements in this category would represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity

refers to the particulate matter concentrations, as well as the land use and land surface characteristics. This category includes suburban neighborhoods dominated by residences that are somewhat distant from major roadways and industrial districts but still impacted by urban sources, and areas of diverse land use where residences are interspersed with commercial and industrial neighborhoods. In some cases, a location carefully chosen to provide neighborhood scale data would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. The comparison of data from middle scale and neighborhood scale sites would provide valuable information for determining the variation of $PM_{10-2.5}$ levels across urban areas and assessing the spatial extent of elevated concentrations caused by major industrial point sources and heavily traveled roadways. Neighborhood scale sites would provide concentration data that are relevant to informing a large segment of the population of their exposure levels on a given day.

4.8.2 [Reserved]

- 5. NETWORK DESIGN FOR PHOTOCHEMICAL AS-SESSMENT MONITORING STATIONS (PAMS) AND ENHANCED OZONE MONITORING
- (a) State and local monitoring agencies are required to collect and report PAMS measurements at each NCore site required under paragraph 3(a) of this appendix located in a CBSA with a population of 1,000,000 or more, based on the latest available census figures.
- (b) PAMS measurements include:
- (1) Hourly averaged speciated volatile organic compounds (VOCs);
- (2) Three 8-hour averaged carbonyl samples per day on a 1 in 3 day schedule, or hourly averaged formaldehyde;
 - (3) Hourly averaged O₃;
- (4) Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO2), and total reactive nitrogen (NO_y);
 - (5) Hourly averaged ambient temperature;
 - (6) Hourly vector-averaged wind direction: (7) Hourly vector-averaged wind speed:
 - (8) Hourly average atmospheric pressure;
 - (9) Hourly averaged relative humidity:
 - (10) Hourly precipitation;
 - (11) Hourly averaged mixing-height:
 - (12) Hourly averaged solar radiation; and (13) Hourly averaged ultraviolet radiation.
- (c) The EPA Regional Administrator may grant a waiver to allow the collection of required PAMS measurements at an alternative location where the monitoring agency can demonstrate that the alternative location will provide representative data useful for regional or national scale modeling and the tracking of trends in O₃ precursors. The alternative location can be outside of the CBSA or outside of the monitoring agencies jurisdiction. In cases where the alternative location crosses jurisdictions the waiver will

be contingent on the monitoring agency responsible for the alternative location including the required PAMS measurements in their annual monitoring plan required under §58.10 and continued successful collection of PAMS measurements at the alternative location. This waiver can be revoked in cases where the Regional Administrator determines the PAMS measurements are not being collected at the alternate location in compliance with paragraph (b) of this sec-

- (d) The EPA Regional Administrator may grant a waiver to allow speciated VOC measurements to be made as three 8-hour averages on every third day during the PAMS season as an alternative to 1-hour average speciated VOC measurements in cases where the primary VOC compounds are not well measured using continuous technology due to low detectability of the primary VOC compounds or for logistical and other programmatic constraints.
- (e) The EPA Regional Administrator may grant a waiver to allow representative meteorological data from nearby monitoring stations to be used to meet the meteorological requirements in paragraph 5(b) where the monitoring agency can demonstrate the data is collected in a manner consistent with EPA quality assurance requirements for these measurements.
- (f) The EPA Regional Administrator may grant a waiver from the requirement to collect PAMS measurements in locations where CBSA-wide O3 design values are equal to or less than 85% of the 8-hour O3 NAAQS and where the location is not considered by the Regional Administrator to be an important upwind or downwind location for other O3 nonattainment areas.
- (g) At a minimum, the monitoring agency shall collect the required PAMS measurements during the months of June, July, and
- (h) States with Moderate and above 8-hour O₃ nonattainment areas and states in the Ozone Transport Region as defined in 40 CFR 51.900 shall develop and implement an Enhanced Monitoring Plan (EMP) detailing enhanced O₃ and O₃ precursor monitoring activities to be performed. The EMP shall be submitted to the EPA Regional Administrator no later than October 1, 2019 or two years following the effective date of a designation to a classification of Moderate or above O₃ nonattainment, whichever is later. At a minimum, the EMP shall be reassessed and approved as part of the 5-year network assessments required under 40 CFR 58.10(d). The EMP will include monitoring activities deemed important to understanding the O3 problems in the state. Such activities may include, but are not limited to, the following:

- (1) Additional O_3 monitors beyond the minimally required under paragraph 4.1 of this appendix,
- (2) Additional NO_x or NO_y monitors beyond those required under 4.3 of this appendix,
- (3) Additional speciated VOC measurements including data gathered during different periods other than required under paragraph 5(g) of this appendix, or locations other than those required under paragraph 5(a) of this appendix, and
- (4) Enhanced upper air measurements of meteorology or pollution concentrations.

6. References

- 1. Ball, R.J. and G.E. Anderson. Optimum Site Exposure Criteria for SO₂ Monitoring. The Center for the Environment and Man, Inc., Hartford, CT. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-77-013. April 1977.
- 2. Ludwig, F.F., J.H.S. Kealoha, and E. Shelar. Selecting Sites for Carbon Monoxide Monitoring. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-75-077, September 1975.
- 3. Air Quality Criteria for Lead. Office of Research and Development, U.S. Environmental Protection Agency, Washington D.C. EPA Publication No. 600/8–89–049F. August 1990. (NTIS document numbers PB87–142378 and PB91–138420.)
- 4. Optimum Site Exposure Criteria for Lead Monitoring. PEDCo Environmental, Inc. Cincinnati, OH. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3013. May 1981.
- 5. Guidance for Conducting Ambient Air Monitoring for Lead Around Point Sources. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/R-92-009. May 1997.
- 6. Koch, R.C. and H.E. Rector. Optimum Network Design and Site Exposure Criteria for Particulate Matter. GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3584. EPA 450/4–87–009. May 1987.
- 7. Watson et al. Guidance for Network Design and Optimum Site Exposure for PM $_{2.5}$ and PM $_{10}$. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/R-99-022, December 1997.
- 8. Guideline for Selecting and Modifying the Ozone Monitoring Season Based on an 8-Hour Ozone Standard. Prepared for U.S. Environmental Protection Agency, RTP, NC. EPA-454/R-98-001, June 1998.
- 9. Photochemical Assessment Monitoring Stations Implementation Manual. Office of Air Quality Planning and Standards, U.S.

Environmental Protection Agency, Research Triangle Park, NC. EPA-454/B-93-051. March 1994.

[71 FR 61316, Oct. 17, 2006, as amended at 72 FR 32211, June 12, 2007; 73 FR 67062, Nov. 12, 2008; 75 FR 6534, Feb. 9, 2010; 75 FR 35602, June 22, 2010; 75 FR 81137, Dec. 27, 2010; 76 FR 54342, Aug. 31, 2011; 78 FR 3284, Jan. 15, 2013; 80 FR 65466, Oct. 26, 2015; 81 FR 17298, Mar. 28, 2016; 81 FR 96388, Dec. 30, 2016]

APPENDIX E TO PART 58—PROBE AND MONITORING PATH SITING CRITERIA FOR AMBIENT AIR QUALITY MONITORING

- 1. Introduction.
- 2. Horizontal and Vertical Placement.
- 3. Spacing from Minor Sources.
- 4. Spacing From Obstructions.
- 5. Spacing From Trees.
- 6. Spacing From Roadways.
- 7. Cumulative Interferences on a Monitoring Path.
- 8. Maximum Monitoring Path Length.
- 9. Probe Material and Pollutant Sample Residence Time.
- 10. Waiver Provisions.
- 11. Summary.
- 12. References.

1. Introduction

- (a) This appendix contains specific location criteria applicable to SLAMS, NCore, and PAMS ambient air quality monitoring probes, inlets, and optical paths after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Adherence to these siting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.
- (b) The probe and monitoring path siting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the siting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a written request for a waiver that describes how and why the proposed siting deviates This documentation from the criteria. should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these siting criteria are discussed in section 10 of this appendix.
- (c) The pollutant-specific probe and monitoring path siting criteria generally apply to all spatial scales except where noted otherwise. Specific siting criteria that are phrased with a "must" are defined as requirements and exceptions must be approved through

- (1) Additional O_3 monitors beyond the minimally required under paragraph 4.1 of this appendix.
- (2) Additional NO_x or NO_y monitors beyond those required under 4.3 of this appendix,
- (3) Additional speciated VOC measurements including data gathered during different periods other than required under paragraph 5(g) of this appendix, or locations other than those required under paragraph 5(a) of this appendix, and
- (4) Enhanced upper air measurements of meteorology or pollution concentrations.

6. References

- 1. Ball, R.J. and G.E. Anderson. Optimum Site Exposure Criteria for SO₂ Monitoring. The Center for the Environment and Man, Inc., Hartford, CT. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-77-013. April 1977.
- 2. Ludwig, F.F., J.H.S. Kealoha, and E. Shelar. Selecting Sites for Carbon Monoxide Monitoring. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-75-077, September 1975.
- 3. Air Quality Criteria for Lead. Office of Research and Development, U.S. Environmental Protection Agency, Washington D.C. EPA Publication No. 600/8–89–049F. August 1990. (NTIS document numbers PB87–142378 and PB91–138420.)
- 4. Optimum Site Exposure Criteria for Lead Monitoring. PEDCo Environmental, Inc. Cincinnati, OH. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3013. May 1981.
- 5. Guidance for Conducting Ambient Air Monitoring for Lead Around Point Sources. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/R-92-009. May 1997.
- 6. Koch, R.C. and H.E. Rector. Optimum Network Design and Site Exposure Criteria for Particulate Matter. GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3584. EPA 450/4–87–009. May 1987.
- 7. Watson et al. Guidance for Network Design and Optimum Site Exposure for PM $_{2.5}$ and PM $_{10}$. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/R-99-022, December 1997.
- 8. Guideline for Selecting and Modifying the Ozone Monitoring Season Based on an 8-Hour Ozone Standard. Prepared for U.S. Environmental Protection Agency, RTP, NC. EPA-454/R-98-001, June 1998.
- 9. Photochemical Assessment Monitoring Stations Implementation Manual. Office of Air Quality Planning and Standards, U.S.

40 CFR Ch. I (7-1-17 Edition)

Environmental Protection Agency, Research Triangle Park, NC. EPA-454/B-93-051. March 1994.

[71 FR 61316, Oct. 17, 2006, as amended at 72 FR 32211, June 12, 2007; 73 FR 67062, Nov. 12, 2008; 75 FR 6534, Feb. 9, 2010; 75 FR 35602, June 22, 2010; 75 FR 81137, Dec. 27, 2010; 76 FR 54342, Aug. 31, 2011; 78 FR 3284, Jan. 15, 2013; 80 FR 65466, Oct. 26, 2015; 81 FR 17298, Mar. 28, 2016; 81 FR 96388, Dec. 30, 2016]

APPENDIX E TO PART 58—PROBE AND MONITORING PATH SITING CRITERIA FOR AMBIENT AIR QUALITY MONITORING

- 1. Introduction.
- 2. Horizontal and Vertical Placement.
- 3. Spacing from Minor Sources.
- 4. Spacing From Obstructions.
- 5. Spacing From Trees.
- 6. Spacing From Roadways.
- 7. Cumulative Interferences on a Monitoring Path.
- 8. Maximum Monitoring Path Length.
- 9. Probe Material and Pollutant Sample Residence Time.
- 10. Waiver Provisions.
- 11. Summary.
- 12. References.

1. Introduction

- (a) This appendix contains specific location criteria applicable to SLAMS, NCore, and PAMS ambient air quality monitoring probes, inlets, and optical paths after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Adherence to these siting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.
- (b) The probe and monitoring path siting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the siting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a written request for a waiver that describes how and why the proposed siting deviates This documentation from the criteria. should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these siting criteria are discussed in section 10 of this appendix.
- (c) The pollutant-specific probe and monitoring path siting criteria generally apply to all spatial scales except where noted otherwise. Specific siting criteria that are phrased with a "must" are defined as requirements and exceptions must be approved through

the waiver provisions. However, siting criteria that are phrased with a "should" are defined as goals to meet for consistency but are not requirements.

2. HORIZONTAL AND VERTICAL PLACEMENT

The probe or at least 80 percent of the monitoring path must be located between 2 and 15 meters above ground level for all O3 and SO₂ monitoring sites, and for neighborhood or larger spatial scale Pb, PM 10, PM_{10-2.5}, PM_{2.5}, NO₂, and CO sites. Middle scale PM $_{\rm 10-2.5}$ sites are required to have sampler inlets between 2 and 7 meters above ground level. Microscale Pb, PM ₁₀, PM _{10-2.5}, and PM 25 sites are required to have sampler inlets between 2 and 7 meters above ground level. Microscale near-road NO2 monitoring sites are required to have sampler inlets between 2 and 7 meters above ground level. The inlet probes for microscale carbon monoxide monitors that are being used to measure concentrations near roadways must be between 2 and 7 meters above ground level. Those inlet probes for microscale carbon monoxide monitors measuring concentrations near roadways in downtown areas or urban street canyons must be between 2.5 and 3.5 meters above ground level. The probe or at least 90 percent of the monitoring path must be at least 1 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If the probe or a significant portion of the monitoring path is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

3 SPACING FROM MINOR SOURCES

(a) It is important to understand the monitoring objective for a particular location in order to interpret this particular requirement. Local minor sources of a primary pollutant, such as SO2, lead, or particles, can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site is likely to be properly located nearby. This type of monitoring site would in all likelihood be a microscale type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city. a monitoring agency should avoid placing a monitor probe, path, or inlet near local, minor sources. The plume from the local minor sources should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter sites should not be located in an unpaved area unless there is vegetative ground cover year round, so that the impact of wind blown dusts will be kept to a minimum.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O₃ in the vicinity of probes and monitoring paths for O₃. To minimize these potential interferences, the probe or at least 90 percent of the monitoring path must be away from furnace or incineration flues or other minor sources of SO2 or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

4. Spacing From Obstructions

(a) Buildings and other obstacles may possibly scavenge SO₂, O₃, or NO₂, and can act to restrict airflow for any pollutant. To avoid this interference, the probe, inlet, or at least 90 percent of the monitoring path must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path. An exception to this requirement can be made for measurements taken in street canyons or at source-oriented sites where buildings and other structures are unavoidable.

(b) Generally, a probe or monitoring path located near or along a vertical wall is undesirable because air moving along the wall may be subject to possible removal mechanisms. A probe, inlet, or monitoring path must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, a minimum of 2 meters of separation from walls, parapets, and structures is required for rooftop site placement.

(c) Special consideration must be given to the use of open path analyzers due to their inherent potential sensitivity to certain types of interferences, or optical obstructions. A monitoring path must be clear of all trees, brush, buildings, plumes, dust, or other optical obstructions, including potential obstructions that may move due to wind, human activity, growth of vegetation, etc. Temporary optical obstructions, such as rain, particles, fog, or snow, should be considered when siting an open path analyzer. Any of these temporary obstructions that are of sufficient density to obscure the light beam will affect the ability of the open path analyzer to continuously measure pollutant concentrations. Transient, but significant obscuration of especially longer measurement paths could occur as a result of certain meteorological conditions (e.g., heavy fog, rain, snow) and/or aerosol levels that are of a sufficient density to prevent the open path

analyzer's light transmission. If certain compensating measures are not otherwise implemented at the onset of monitoring (e.g., shorter path lengths, higher light source intensity), data recovery during periods of greatest primary pollutant potential could be compromised. For instance, if heavy fog or high particulate levels are coincident with periods of projected NAAQS-threatening pollutant potential, the representativeness of the resulting data record in reflecting maximum pollutant concentrations may be substantially impaired despite the fact that the site may otherwise exhibit an acceptable, even exceedingly high overall valid data capture rate.

(d) For near-road NO_2 monitoring stations, the monitor probe shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitor probe, between the monitor probe and the outside nearest edge of the traffic lanes of the target road segment.

5. SPACING FROM TREES

- (a) Trees can provide surfaces for SO₂, O₃, or NO₂ adsorption or reactions, and surfaces for particle deposition. Trees can also act as obstructions in cases where they are located between the air pollutant sources or source areas and the monitoring site, and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the probe, inlet, or monitoring path. To reduce this possible interference/obstruction, the probe, inlet, or at least 90 percent of the monitoring path must be at least 10 meters or further from the drip line of trees
- (b) The scavenging effect of trees is greater for $\rm O_3$ than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.
- (c) For microscale sites of any air pollutant, no trees or shrubs should be located between the probe and the source under investigation, such as a roadway or a stationary source.

6. SPACING FROM ROADWAYS

Table E-1 of Appendix E to Part 58—Minimum Separation Distance Between Roadways and Probes or Monitoring Paths for Monitoring Neighborhood and Urban Scale Ozone (O_3) and Oxides of Nitrogen (NO, NO_2, NO_x, NO_y)

Roadway average daily traffic, vehicles per day	Minimum distance ¹ (meters)	Minimum distance ^{1 2} (meters)
≤1,000	10	10
10,000	10	20
15,000	20	30
20,000	30	40

Table E-1 of Appendix E to Part 58—Minimum Separation Distance Between Roadways and Probes or Monitoring Paths for Monitoring Neighborhood and Urban Scale Ozone (O_3) and Oxides of Nitrogen (NO, NO_2, NO_x, NO_y) —Continued

Roadway average daily traffic, vehicles per day	Minimum distance ¹ (meters)	Minimum distance 1 2 (meters)	
40,000	50	60	
70,000	100	100	
≥110,000	250	250	

¹ Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

²Applicable for ozone monitors whose placement has not already been approved as of December 18, 2006.

6.1 Spacing for Ozone Probes and Monitoring Paths

In siting an O₃ analyzer, it is important to minimize destructive interferences form sources of NO, since NO readily reacts with O₃. Table E-1 of this appendix provides the required minimum separation distances between a roadway and a probe or, where applicable, at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A sampling site having a point analyzer probe located closer to a roadway than allowed by the Table E-1 requirements should be classified as microscale or middle scale, rather than neighborhood or urban scale, since the measurements from such a site would more closely represent the middle scale. If an open path analyzer is used at a site, the monitoring path(s) must not cross over a roadway with an average daily traffic count of 10.000 vehicles per day or more. For those situations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference from automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined from the Table E-1 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

6.2 Spacing for Carbon Monoxide Probes and Monitoring Paths. (a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

- (b) Microscale CO monitor inlets probes in downtown areas or urban street canyon locations shall be located a minimum distance of 2 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.
- (c) Microscale CO monitor inlet probes in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection and preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon/corridors than at intersections.

TABLE E-2 OF APPENDIX E TO PART 58—MIN-IMUM SEPARATION DISTANCE BETWEEN ROAD-WAYS AND PROBES OR MONITORING PATHS FOR MONITORING NEIGHBORHOOD SCALE CARBON MONOXIDE

Roadway average daily traffic, vehicles per day	Minimum dis- tance 1 (me- ters)
≤10,000	10
15,000	25
20,000	45
30,000	80
40,000	115
50,000	135
≥60,000	150

¹ Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

6.3 Spacing for Particulate Matter (PM $_{2.5}$, PM $_{10}$, Pb) Inlets. (a) Since emissions associated with the operation of motor vehicles contribute to urban area particulate matter ambient levels, spacing from roadway criteria are necessary for ensuring national consistency in PM sampler siting.

(b) The intent is to locate localized hotspot sites in areas of highest concentrations whether it be from mobile or multiple stationary sources. If the area is primarily affected by mobile sources and the maximum concentration area(s) is judged to be a traffic corridor or street canyon location, then the monitors should be located near roadways with the highest traffic volume and at separation distances most likely to produce the highest concentrations. For the microscale traffic corridor site, the location must be between 5 and 15 meters from the major roadway. For the microscale street canyon site the location must be between 2 and 10 meters from the roadway. For the middle scale site, a range of acceptable distances from the roadway is shown in figure E-1 of this appendix. This figure also includes separation dis-

tances between a roadway and neighborhood or larger scale sites by default. Any site, 2 to 15 meters high, and further back than the middle scale requirements will generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by roadway emissions and that sampler is set back 10 meters from a 30,000 ADT (average daily traffic) road, the site should be classified as microscale, if the sampler height is between 2 and 7 meters. If the sampler height is between 7 and 15 meters, the site should be classified as middle scale. If the sample is 20 meters from the same road, it will be classified as middle scale; if 40 meters, neighborhood scale; and if 110 meters, an urban scale.

- 6.4 Spacing for Nitrogen Dioxide (NO_2) Probes and Monitoring Paths.
- (a) In siting near-road NO_2 monitors as required in paragraph 4.3.2 of appendix D of this part, the monitor probe shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment; but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment.
- (b) In siting NO₂ monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E-1 of this appendix provides the required minimum separation distances between a roadway and a probe or, where applicable, at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A sampling site having a point analyzer probe located closer to a roadway than allowed by the Table E-1 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale. If an open path analyzer is used at a site, the monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For those situations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference form automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined form the Table E-1 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

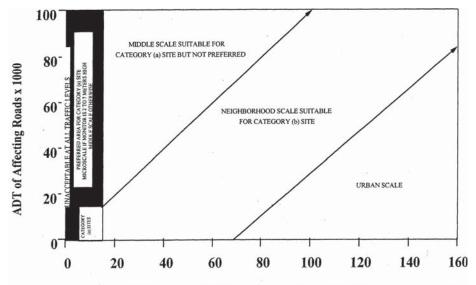


Figure E-1. Distance of PM samplers to nearest traffic lane (meters)

7. CUMULATIVE INTERFERENCES ON A MONITORING PATH

(This paragraph applies only to open path analyzers.) The cumulative length or portion of a monitoring path that is affected by minor sources, trees, or roadways must not exceed 10 percent of the total monitoring path length.

8. MAXIMUM MONITORING PATH LENGTH

(This paragraph applies only to open path analyzers.) The monitoring path length must not exceed 1 kilometer for analyzers in neighborhood, urban, or regional scale. For middle scale monitoring sites, the monitoring path length must not exceed 300 meters. In areas subject to frequent periods of dust, fog, rain, or snow, consideration should be given to a shortened monitoring path length to minimize loss of monitoring data due to these temporary optical obstructions. For certain ambient air monitoring scenarios using open path analyzers, shorter path lengths may be needed in order to ensure that the monitoring site meets the objectives and spatial scales defined in appendix D to this part. The Regional Administrator may require shorter path lengths, as needed on an individual basis, to ensure that the SLAMS sites meet the appendix D requirements. Likewise, the Administrator may specify the maximum path length used at NCore monitoring sites.

9. PROBE MATERIAL AND POLLUTANT SAMPLE RESIDENCE TIME

(a) For the reactive gases, SO2, NO2, and O₃, special probe material must be used for point analyzers. Studies 20M24 have been conducted to determine the suitability of materials such as polypropylene, polyethylene, polyvinyl chloride, Tygon®, aluminum, brass, stainless steel, copper, Pyrex® glass and Teflon® for use as intake sampling lines. Of the above materials, only Pyrex® glass and Teflon® have been found to be acceptable for use as intake sampling lines for all the reactive gaseous pollutants. Furthermore, the EPA 25 has specified borosilicate glass or FEP Teflon® as the only acceptable probe materials for delivering test atmospheres in the determination of reference or equivalent methods. Therefore, borosilicate glass, FEP Teflon® or their equivalent must be the only material in the sampling train (from inlet probe to the back of the analyzer) that can be in contact with the ambient air sample for existing and new SLAMs.

(b) For volatile organic compound (VOC) monitoring at PAMS, FEP Teflon® is unacceptable as the probe material because of VOC adsorption and desorption reactions on the FEP Teflon®. Borosilicate glass, stainless steel, or its equivalent are the acceptable probe materials for VOC and carbonyl sampling. Care must be taken to ensure that the sample residence time is kept to 20 seconds or less.

(c) No matter how nonreactive the sampling probe material is initially, after a period of use reactive particulate matter is deposited on the probe walls. Therefore, the time it takes the gas to transfer from the probe inlet to the sampling device is also critical. Ozone in the presence of nitrogen oxide (NO) will show significant losses even in the most inert probe material when the residence time exceeds 20 seconds. 26 Other studies $^{27\,28}$ indicate that a 10 second or less residence time is easily achievable. Therefore, sampling probes for reactive gas monitors at NCore and at NO₂ sites must have a sample residence time less than 20 seconds.

10. Waiver Provisions

Most sampling probes or monitors can be located so that they meet the requirements of this appendix. New sites with rare exceptions, can be located within the limits of this appendix. However, some existing sites may not meet these requirements and still produce useful data for some purposes. The EPA will consider a written request from the State agency to waive one or more siting criteria for some monitoring sites providing that the State can adequately demonstrate the need (purpose) for monitoring or establishing a monitoring site at that location.

- 10.1 For establishing a new site, a waiver may be granted only if both of the following criteria are met:
- 10.1.1 The site can be demonstrated to be as representative of the monitoring area as it would be if the siting criteria were being met.
- 10.1.2 The monitor or probe cannot reasonably be located so as to meet the siting

criteria because of physical constraints (e.g., inability to locate the required type of site the necessary distance from roadways or obstructions).

- 10.2 However, for an existing site, a waiver may be granted if either of the criteria in sections 10.1.1 and 10.1.2 of this appendix are met.
- 10.3 Cost benefits, historical trends, and other factors may be used to add support to the criteria in sections 10.1.1 and 10.1.2 of this appendix, however, they in themselves, will not be acceptable reasons for granting a waiver. Written requests for waivers must be submitted to the Regional Administrator.

11. SUMMARY

Table E-4 of this appendix presents a summary of the general requirements for probe and monitoring path siting criteria with respect to distances and heights. It is apparent from Table E-4 that different elevation distances above the ground are shown for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitor, probe, or monitoring path. The differences in the specified range of heights are based on the vertical concentration gradients. For CO and near-road NO2 monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a single manifold or monitoring path for monitoring more than one pollutant.

TABLE E-4 OF APPENDIX E TO PART 58—SUMMARY OF PROBE AND MONITORING PATH SITING CRITERIA

Pollutant	Scale (maximum monitoring path length, meters)	Height from ground to probe, inlet or 80% of monitoring path ¹ (meters)	Horizontal and vertical distance from supporting structures 2 to probe, inlet or 90% of monitoring path1 (meters)	Distance from trees to probe, inlet or 90% of monitoring path ¹ (meters)	Distance from roadways to probe, inlet or monitoring path ¹ (meters)
SO ₂ 3456	Middle (300 m) Neighborhood Urban, and Regional (1 km).	2–15	>1	>10	N/A.
CO ⁴⁵⁷	Micro [downtown or street canyon sites], micro [near-road sites], middle (300 m) and Neighborhood (1 km).	2.5–3.5; 2–7; 2–15	>1	>10	2–10 for down- town areas or street canyon microscale; ≤50 for near-road microscale; see Table E–2 of this appendix for middle and neighborhood scales.
O ₃ 345	Middle (300 m) Neighborhood, Urban, and Regional (1 km).	2–15	>1	>10	See Table E-1 of this appendix for all scales.

TABLE E-4 OF APPENDIX E TO PART 58-SUMMARY OF PROBE AND MONITORING PATH SITING CRITERIA—Continued

Pollutant	Scale (maximum monitoring path length, meters)	Height from ground to probe, inlet or 80% of monitoring path ¹ (meters)	Horizontal and vertical distance from supporting structures 2 to probe, inlet or 90% of monitoring path¹ (meters)	Distance from trees to probe, inlet or 90% of monitoring path ¹ (meters)	Distance from roadways to probe, inlet or monitoring path ¹ (meters)
NO ₂ ^{3 4 5}	Micro (Near-road [50-300 m]). Middle (300 m)	2-7 (micro);	>1	>10	≤50 for near-road micro-scale.
	Neighborhood, Urban, and Re- gional (1 km).				See Table E-1 of this appendix for all other scales.
Ozone precursors (for PAMS) ^{3 4 5} .	Neighborhood and Urban (1 km).	2–15	>1	>10	See Table E-4 of this appendix for all scales.
PM, Pb ³⁴⁵⁸	Micro, Middle, Neighborhood, Urban and Re- gional.	2–7 (micro); 2–7 (middle PM _{10–2.5}); 2–7 for near-road; 2–15 (all other scales).	>2 (all scales, hor- izontal distance only).	>10 (all scales)	2–10 (micro); see Figure E–1 of this appendix for all other scales. ≤50 for near- road.

N/A-Not applicable.

NAM—Not applicable.

1 Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale NO₂ monitoring, and all applicable scales for monitoring SO₂, O₃, and O₃ precursors.

2 When probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on roof.

3 Should be greater than 20 meters from the dripline of tree(s) and must be 10 meters from the dripline when the tree(s) act as

an obstruction.

⁴ Distance from sampler, probe, or 90 percent of monitoring path to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler, probe, or monitoring path. Sites not meeting this criterion may be classified as middle scale (see text).

⁵Must have unrestricted airflow 270 degrees around the probe or sampler; 180 degrees if the probe is on the side of a build-

ing or a wall.

The probe, sampler, or monitoring path should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source's emission point (such as a flue), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.

Teor micro-scale CO monitoring sites, the probe must be >10 meters from a street intersection and preferably at a midblock.

⁸ Collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference, unless a waiver is in place as approved by the Regional Administrator pursuant to section 3 of Appendix A.

12. References

- 1. Bryan, R.J., R.J. Gordon, and H. Menck. Comparison of High Volume Air Filter Samples at Varying Distances from Los Angeles Freeway. University of Southern California, School of Medicine, Los Angeles, CA. (Presented at 66th Annual Meeting of Air Pollution Control Association. Chicago, IL. June 24–28, 1973. APCA 73–158.)
- 2. Teer, E.H. Atmospheric Lead Concentration Above an Urban Street. Master of Science Thesis, Washington University, St. Louis, MO. January 1971.
- 3. Bradway, R.M., F.A. Record, and W.E. Belanger. Monitoring and Modeling of Resuspended Roadway Dust Near Urban Arterials. GCA Technology Division, Bedford, MA. (Presented at 1978 Annual Meeting of Transportation Research Board, Washington, DC. January 1978.)
- 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of Relationship Between Monitor Height and Measured Particulate Levels in Seven U.S. Urban Areas. U.S. Environmental Protection Agency, Research Tri-

- angle Park, NC. (Presented at 70th Annual Meeting of Air Pollution Control Association, Toronto, Canada. June 20-24, 1977. APCA 77-13.4.)
- 5. Harrison, P.R. Considerations for Siting Air Quality Monitors in Urban Areas. City of Chicago, Department of Environmental Control, Chicago, IL. (Presented at 66th Annual Meeting of Air Pollution Control Association, Chicago, IL. June 24-28, 1973. APCA 73-
- 6. Study of Suspended Particulate Measurements at Varying Heights Above Ground. Texas State Department of Health, Air Control Section, Austin, TX. 1970. p.7.
- 7. Rodes, C.E. and G.F. Evans. Summary of LACS Integrated Pollutant Data. In: Los Angeles Catalyst Study Symposium. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-600/4-77-034. June 1977.
- 8. Lynn, D.A. et al. National Assessment of the Urban Particulate Problem: Volume 1, National Assessment. GCA Technology Division, Bedford, MA. U.S. Environmental Protection Agency, Research Triangle Park, NC.

- EPA Publication No. EPA-450/3-75-024. June 1976.
- 9. Pace, T.G. Impact of Vehicle-Related Particulates on TSP Concentrations and Rationale for Siting Hi-Vols in the Vicinity of Roadways. OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, NC. April 1978.
- 10. Ludwig, F.L., J.H. Kealoha, and E. Shelar. Selecting Sites for Monitoring Total Suspended Particulates. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-77-018. June 1977, revised December 1977.
- 11. Ball, R.J. and G.E. Anderson. Optimum Site Exposure Criteria for SO_2 Monitoring. The Center for the Environment and Man, Inc., Hartford, CT. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-77-013. April 1977.
- 12. Ludwig, F.L. and J.H.S. Kealoha. Selecting Sites for Carbon Monoxide Monitoring. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-75-077. September 1975.
- 13. Ludwig, F.L. and E. Shelar. Site Selection for the Monitoring of Photochemical Air Pollutants. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA-450/3-78-013. April 1978.
- 14. Lead Analysis for Kansas City and Cincinnati, PEDCo Environmental, Inc., Cincinnati, OH. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 66-02-2515, June 1977.
- 15. Barltrap, D. and C.D. Strelow. Westway Nursery Testing Project. Report to the Greater London Council. August 1976.
- 16. Daines, R. H., H. Moto, and D. M. Chilko. Atmospheric Lead: Its Relationship to Traffic Volume and Proximity to Highways. Environ. Sci. and Technol., 4:318, 1970.
- 17. Johnson, D. E., et al. Epidemiologic Study of the Effects of Automobile Traffic on Blood Lead Levels, Southwest Research Institute, Houston, TX. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-600/1-78-055, August 1978.
- 18. Air Quality Criteria for Lead. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC EPA-600/8-83-028 aF-dF, 1986, and supplements EPA-600/8-89/049F, August 1990. (NTIS document numbers PB87-142378 and PB91-138420)
- 19. Lyman, D. R. The Atmospheric Diffusion of Carbon Monoxide and Lead from an

- Expressway, Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH. 1972.
- 20. Wechter, S.G. Preparation of Stable Pollutant Gas Standards Using Treated Aluminum Cylinders. ASTM STP, 598:40-54, 1976.
- 21. Wohlers, H.C., H. Newstein and D. Daunis. Carbon Monoxide and Sulfur Dioxide Adsorption On and Description From Glass, Plastic and Metal Tubings. J. Air Poll. Con. Assoc. 17:753, 1976.
- 22. Elfers, L.A. Field Operating Guide for Automated Air Monitoring Equipment. U.S. NTIS. p. 202, 249, 1971.
- 23. Hughes, E.E. Development of Standard Reference Material for Air Quality Measurement. ISA Transactions, 14:281–291, 1975.
- 24. Altshuller, A.D. and A.G. Wartburg. The Interaction of Ozone with Plastic and Metallic Materials in a Dynamic Flow System. Intern. Jour. Air and Water Poll., 4:70–78, 1961.
- 25. Code of Federal Regulations. Title 40 part 53.22, July 1976.
- 26. Butcher, S.S. and R.E. Ruff. Effect of Inlet Residence Time on Analysis of Atmospheric Nitrogen Oxides and Ozone, Anal. Chem., 43:1890, 1971.
- 27. Slowik, A.A. and E.B. Sansone. Diffusion Losses of Sulfur Dioxide in Sampling Manifolds. J. Air. Poll. Con. Assoc., 24:245, 1974.
- 28. Yamada, V.M. and R.J. Charlson. Proper Sizing of the Sampling Inlet Line for a Continuous Air Monitoring Station. Environ. Sci. and Technol., 3:483, 1969.
- 29. Koch, R.C. and H.E. Rector. Optimum Network Design and Site Exposure Criteria for Particulate Matter, GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68-02-3584. EPA 450/4-87-009. May 1987.
- 30. Burton, R.M. and J.C. Suggs. Philadelphia Roadway Study. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N.C. EPA-600/4-84-070 September 1984.
- 31. Technical Assistance Document For Sampling and Analysis of Ozone Precursors. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/8-91-215. October 1991.
- 32. Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/4–90–0003. August 1989.
- 33. On-Site Meteorological Program Guidance for Regulatory Modeling Applications.

Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 450/4-87-013. June 1987F.

[71 FR 61323, Oct. 17, 2006, as amended at 75 FR 6535, Feb. 9, 2010; 76 FR 54342, Aug. 31, 2011; 78 FR 3285, Jan. 15, 2013]

APPENDIX F TO PART 58 [RESERVED]

APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING

GENERAL REQUIREMENTS

- 1. What is the AQI?
- 2. Why report the AQI?
- 3. Must I report the AQI?
- 4. What goes into my AQI report?
- 5. Is my AQI report for my MSA only?
- 6. How do I get my AQI report to the public?
- 7. How often must I report the AQI?
- 8. May I make exceptions to these reporting requirements?

CALCULATION

- 9. How Does the AQI Relate to Air Pollution Levels?
- 10. What Monitors Should I Use To Get the Pollutant Concentrations for Calculating the AQI?
 - 11. Do I have to forecast the AQI?
 - 12. How Do I Calculate the AQI?

BACKGROUND AND REFERENCE MATERIALS

13. What Additional Information Should I Know?

GENERAL REQUIREMENTS

1. What Is the AQI?

The AQI is a tool that simplifies reporting air quality to the general public. The AQI incorporates into a single index concentrations of 5 criteria pollutants: ozone (O_3) , particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO_2) , and nitrogen dioxide (NO_2) . The scale of the index is divided into general categories that are associated with health messages.

2. Why Report the AQI?

The AQI offers various advantages:

- a. It is simple to create and understand.
- b. It conveys the health implications of air quality.
- c. It promotes uniform use throughout the country.

3. Must I Report the AQI?

You must report the AQI daily if yours is a metropolitan statistical area (MSA) with a population over 350,000.

40 CFR Ch. I (7-1-17 Edition)

4. What Goes Into My AQI Report?

- i. Your AQI report must contain the following:
- a. The reporting area(s) (the MSA or subdivision of the MSA).
- b. The reporting period (the day for which the AQI is reported).
- c. The critical pollutant (the pollutant with the highest index value).
- d. The AQI (the highest index value).
- e. The category descriptor and index value associated with the AQI and, if you choose to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

TABLE 1-AQI CATEGORIES

For this AQI	Use this descriptor	And this color 1
0 to 50	"Good"	Green.
51 to 100	"Moderate"	Yellow.
101 to 150	"Unhealthy for Sensitive Groups".	Orange.
151 to 200	"Unhealthy"	Red.
201 to 300	"Very Unhealthy"	Purple.
301 and above	"Hazardous"	Maroon. 1

- ¹ Specific colors can be found in the most recent reporting guidance (Guideline for Public Reporting of Daily Air Quality—Air Quality Index (AQI)).
- f. The pollutant specific sensitive groups for any reported index value greater than 100. Use the following sensitive groups for each pollutant:

When this pollutant has an Report these sensitive groups * * * index value above 100 Children and people with asthma are the groups Ozone PM 2.5 People with respiratory or heart disease, the elderly and children are the groups most at risk. PM 10 People with respiratory disease are the group most at risk. CO People with heart disease are the group most at SO₂ People with asthma are the group most at risk. NO₂ Children and people with respiratory disease are the groups most at risk.

- ii. When appropriate, your AQI report may also contain the following:
- a. Appropriate health and cautionary statements.

Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 450/4-87-013. June 1987F.

[71 FR 61323, Oct. 17, 2006, as amended at 75 FR 6535, Feb. 9, 2010; 76 FR 54342, Aug. 31, 2011; 78 FR 3285, Jan. 15, 2013]

APPENDIX F TO PART 58 [RESERVED]

APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING

GENERAL REQUIREMENTS

- 1. What is the AQI?
- 2. Why report the AQI?
- 3. Must I report the AQI?
- 4. What goes into my AQI report?
- 5. Is my AQI report for my MSA only?
- 6. How do I get my AQI report to the public?
- 7. How often must I report the AQI?
- 8. May I make exceptions to these reporting requirements?

CALCULATION

- 9. How Does the AQI Relate to Air Pollution Levels?
- 10. What Monitors Should I Use To Get the Pollutant Concentrations for Calculating the AQI?
- 11. Do I have to forecast the AQI?
- 12. How Do I Calculate the AQI?

BACKGROUND AND REFERENCE MATERIALS

13. What Additional Information Should I Know?

GENERAL REQUIREMENTS

1. What Is the AQI?

The AQI is a tool that simplifies reporting air quality to the general public. The AQI incorporates into a single index concentrations of 5 criteria pollutants: ozone (O_3) , particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO₂), and nitrogen dioxide (NO₂). The scale of the index is divided into general categories that are associated with health messages.

2. Why Report the AQI?

The AQI offers various advantages:

- a. It is simple to create and understand.
- b. It conveys the health implications of air quality.
- $\ensuremath{\mathrm{c}}.$ It promotes uniform use throughout the country.

3. Must I Report the AQI?

You must report the AQI daily if yours is a metropolitan statistical area (MSA) with a population over 350,000.

40 CFR Ch. I (7-1-17 Edition)

4. What Goes Into My AQI Report?

- i. Your AQI report must contain the following:
- a. The reporting area(s) (the MSA or subdivision of the MSA).
- b. The reporting period (the day for which the AQI is reported).
- c. The critical pollutant (the pollutant with the highest index value).
- d. The AQI (the highest index value).
- e. The category descriptor and index value associated with the AQI and, if you choose to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

TABLE 1-AQI CATEGORIES

For this AQI	Use this descriptor	And this color 1
0 to 50	"Good"	Green.
51 to 100	"Moderate"	Yellow.
101 to 150	"Unhealthy for Sensitive Groups".	Orange.
151 to 200	"Unhealthy"	Red.
201 to 300	"Very Unhealthy"	Purple.
301 and above	"Hazardous"	Maroon. 1

- ¹ Specific colors can be found in the most recent reporting guidance (Guideline for Public Reporting of Daily Air Quality—Air Quality Index (AQI)).
- f. The pollutant specific sensitive groups for any reported index value greater than 100. Use the following sensitive groups for each pollutant:

each pon	utant.
When this pollutant has an index value above 100	Report these sensitive groups * * *
Ozone	Children and people with asthma are the groups most at risk.
PM _{2.5}	People with respiratory or heart disease, the elderly and children are the groups most at risk.
PM 10	People with respiratory disease are the group most at risk.
CO	People with heart disease are the group most at risk.
SO ₂	People with asthma are the group most at risk.
NO ₂	Children and people with respiratory disease are the groups most at risk.

- ii. When appropriate, your AQI report may also contain the following:
- a. Appropriate health and cautionary statements.

- b. The name and index value for other pollutants, particularly those with an index value greater than 100.
- c. The index values for sub-areas of your $\ensuremath{\mathsf{MSA}}\xspace.$
 - d. Causes for unusual AQI values.
 - e. Actual pollutant concentrations.

5. Is My AQI Report for My MSA Only?

Generally, your AQI report applies to your MSA only. However, if a significant air quality problem exists (AQI greater than 100) in areas significantly impacted by your MSA but not in it (for example, O₃ concentrations are often highest downwind and outside an urban area), you should identify these areas and report the AQI for these areas as well.

6. How Do I Get My AQI Report to the Public?

You must furnish the daily report to the appropriate news media (radio, television, and newspapers). You must make the daily report publicly available at one or more places of public access, or by any other means, including a recorded phone message, a public Internet site, or facsimile transmission. When the AQI value is greater than 100, it is particularly critical that the reporting to the various news media be as extensive as possible. At a minimum, it should include notification to the media with the largest market coverages for the area in question.

7. How Often Must I Report the AQI?

You must report the AQI at least 5 days per week. Exceptions to this requirement are in section 8 of this appendix.

8. May I Make Exceptions to These Reporting Requirements?

i. If the index value for a particular pollutant remains below 50 for a season or year, then you may exclude the pollutant from your calculation of the AQI in section 12.

ii. If all index values remain below 50 for a year, then you may report the AQI at your discretion. In subsequent years, if pollutant levels rise to where the AQI would be above 50, then the AQI must be reported as required in sections 3, 4, 6, and 7 of this appendix.

CALCULATION

9. How does the AQI relate to air pollution levels?

For each pollutant, the AQI transforms ambient concentrations to a scale from 0 to 500. The AQI is keyed as appropriate to the national ambient air quality standards (NAAQS) for each pollutant. In most cases, the index value of 100 is associated with the numerical level of the short-term standard (i.e., averaging time of 24-hours or less) for each pollutant. The index value of 50 is associated with the numerical level of the annual

standard for a pollutant, if there is one, at one-half the level of the short-term standard for the pollutant, or at the level at which it is appropriate to begin to provide guidance on cautionary language. Higher categories of the index are based on increasingly serious health effects and increasing proportions of the population that are likely to be affected. The index is related to other air pollution concentrations through linear interpolation based on these levels. The AQI is equal to the highest of the numbers corresponding to each pollutant. For the purposes of reporting the AQI, the sub-indexes for PM $_{10}$ and PM $_{2.5}$ are to be considered separately. The pollutant responsible for the highest index value (the reported AQI) is called the "critical" pollutant.

10. What monitors should I use to get the pollutant concentrations for calculating the AQI?

You must use concentration data from State/Local Air Monitoring Station (SLAMS) or parts of the SLAMS required by 40 CFR 58.10 for each pollutant except PM. For PM, calculate and report the AQI on days for which you have measured air quality data (e.g., from continuous PM_{2.5} monitors required in Appendix D to this part). You may use PM measurements from monitors that are not reference or equivalent methods (for example, continuous PM₁₀ or PM_{2.5} monitors). Detailed guidance for relating non-approved measurements to approved methods by statistical linear regression is referenced in section 13 below.

11. Do I Have to Forecast the AQI?

You should forecast the AQI to provide timely air quality information to the public, but this is not required. If you choose to forecast the AQI, then you may consider both long-term and short-term forecasts. You can forecast the AQI at least 24-hours in advance using the most accurate and reasonable procedures considering meteorology, topography, availability of data, and forecasting expertise. The document "Guideline for Developing an Ozone Forecasting Program" (the Forecasting Guidance) will help you start a forecasting program. You can also issue short-term forecasts by predicting 8-hour ozone values from 1-hour ozone values using methods suggested in the Reporting Guidance, "Guideline for Public Reporting of Daily Air Quality."

12. How do I calculate the AQI?

- i. The AQI is the highest value calculated for each pollutant as follows:
- a. Identify the highest concentration among all of the monitors within each reporting area and truncate as follows:
- (1) Ozone—truncate to 3 decimal places PM $_{2.5}$ —truncate to 1 decimal place PM $_{10}$ —truncate to integer

40 CFR Ch. I (7-1-17 Edition)

CO-truncate to 1 decimal place SO2-truncate to integer NO2-truncate to integer (2) [Reserved]

b. Using Table 2, find the two breakpoints that contain the concentration.

c. Using Equation 1, calculate the index.

d. Round the index to the nearest integer.

TABLE 2—BREAKPOINTS FOR THE AQI

These breakpoints				Equal these AQI's				
O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m ³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	Category
0.000-0.054 0.055-0.070 0.071-0.085	 0.125–0.164	0.0—12.0 12.1—35.4 35.5—55.4	0–54 55–154 155–254	0.0-4.4 4.5-9.4 9.5-12.4	0–35 36–75 76–185	0–53 54–100 101–360	0–50 51–100 101–150	Good. Moderate. Unhealthy for Sensitive Groups.
0.086-0.105 0.106-0.200 0.201-(2) (2)	0.165–0.204 0.205–0.404 0.405–0.504 0.505–0.604	³ 55.5—150.4 ³ 150.5—250.4 ³ 250.5—350.4 ³ 350.5—500.4	255–354 355–424 425–504 505–604	12.5–15.4 15.5–30.4 30.5–40.4 40.5–50.4	⁴ 186–304 ⁴ 305–604 ⁴ 605–804 ⁴ 805–1004	361–649 650–1249 1250–1649 1650–2049	151–200 201–300 301–400 401–500	Unhealthy. Very Unhealthy. Hazardous.

¹ Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be more precautionary. In these cases, in addition to calculating the 8-hour ozone index value, the 1-hour ozone index value may be calculated, and the maximum of the two values reported.

² 8-hour O₃ values do not define higher AQI values (>301). AQI values > 301 are calculated with 1-hour O₃ concentrations.

³ If a different SHL for PM_{2.5} is promulgated, these numbers will change accordingly.

⁴ 1-hr SO₂ values do not define higher AQI values (≥200). AQI values of 200 or greater are calculated with 24-hour SO₂ concentration.

ii. If the concentration is equal to a breakpoint, then the index is equal to the corresponding index value in Table 2. However, Equation 1 can still be used. The results will be equal. If the concentration is between two breakpoints, then calculate the index of that pollutant with Equation 1. You must also

note that in some areas, the AQI based on 1hour O_3 will be more precautionary than using 8-hour values (see footnote 1 to Table 2). In these cases, you may use 1-hour values as well as 8-hour values to calculate index values and then use the maximum index value as the AQI for O3.

$$I_{p} = \frac{I_{Hi} - I_{Lo}}{BP_{Hi} - BP_{Lo}} \left(C_{p} - BP_{Lo} \right) + I_{Lo} \qquad \text{(Equation 1)}$$

 I_p = the index value for pollutant,

 $\dot{C_p}$ = the truncated concentration of pollut-

 $\mathrm{BP}_{\mathrm{Hi}} = \mathrm{the}$ breakpoint that is greater than or equal to C_p BP_{Lo} = the breakpoint that is less than or

equal to C_p I_{Hi} = the AQI value corresponding to BP_{Hi}

 I_{lo} = the AQI value corresponding to BP_{Lo} .

iii. If the concentration is larger than the highest breakpoint in Table 2 then you may use the last two breakpoints in Table 2 when you apply Equation 1.

Example

iv. Using Table 2 and Equation 1, calculate the index value for each of the pollutants measured and select the one that produces the highest index value for the AQI. For ex-

ample, if you observe a PM $_{10}$ value of 210 $\mu \mathrm{g}/$ m3, a 1-hour O3 value of 0.156 ppm, and an 8hour O₃ value of 0.130 ppm, then do this:

a. Find the breakpoints for PM 10 at 210 µg/ m³ as 155 μg/m³ and 254 μg/m³, corresponding to index values 101 and 150;

b. Find the breakpoints for 1-hour O_3 at 0.156 ppm as 0.125 ppm and 0.164 ppm, corresponding to index values 101 and 150;

c. Find the breakpoints for 8-hour O2 at 0.130 ppm as 0.116 ppm and 0.374 ppm, corresponding to index values 201 and 300;

d. Apply Equation 1 for 210 $\mu g/m^3,\ PM_{10};$

$$\frac{150 - 101}{254 - 155} \left(210 - 155\right) + 101 = 128$$

e. Apply Equation 1 for 0.156 ppm, 1-hour O_3 :

$$\frac{150 - 101}{0.164 - 0.125} \left(0.156 - 0.125 \right) + 101 = 140$$

f. Apply Equation 1 for 0.130 ppm, 8-hour

$$\frac{300 - 201}{0.374 - 0.116} \left(0.130 - 0.116 \right) + 201 = 206$$

- g. Find the maximum, 206. This is the AQI. The minimal AQI report would read:
- v. Todav, the AQI for my city is 206 which is Very Unhealthy, due to ozone. Children and people with asthma are the groups most at risk.
- 13. What additional information should I know?

The EPA has developed a computer program to calculate the AQI for you. The program prompts for inputs, and it displays all the pertinent information for the AQI (the index value, color, category, sensitive group, health effects, and cautionary language). The EPA has also prepared a brochure on the AQI that explains the index in detail (The Air Quality Index), Reporting Guidance (Technical Assistance Document for the Reporting of Daily Air Quality-the Air Quality Index (AQI)) that provides associated health effects and cautionary statements, and Forecasting Guidance (Guideline for Developing an Ozone Forecasting Program) that explains the steps necessary to start an air pollution forecasting program. You can download the program and the guidance documents at www.airnow.gov. Reference for relating non-approved PM measurements to approved methods (Eberly, S., T. Fitz-Simons, T. Hanley, L. Weinstock., T. Tamanini, G. Denniston, B. Lambeth, E. Michel, S. Bortnick. Data Quality Objectives (DQOs) For Relating Federal Reference Method (FRM) and Continuous PM 2.5 Measurements to Report an Air Quality Index (AQI). U.S. Environmental Protection Agencv. Research Triangle Park, NC, EPA-454/B-02-002, November 2002) can be found on the Ambient Monitoring Technology Information Center (AMTIC) Web site, http:// www.epa.gov/ttnamti1/.

[64 FR 42547, Aug. 4, 1999, as amended at 73 FR 16513, Mar. 27, 2008; 75 FR 6537, Feb. 9, 2010; 75 FR 35602, June 22, 2010; 78 FR 3286, Jan. 15, 2013; 80 FR 65468, Oct. 26, 2015]

PART 59—NATIONAL VOLATILE OR-GANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS

Sec.

Subpart A—General

59.1 Final determinations under Section 183(e)(3)(C) of the CAA.

Subpart B-National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings

- 59.100 Applicability and designation of regulated entity.
- 59.101 Definitions.
- 59.102 Standards.
- 59.103 Container labeling requirements.
- 59.104 Compliance provisions.
- 59.105 Reporting requirements.
- 59.106 Variance.
- 59.107 Addresses of EPA Regional offices.
- State authority.
- 59.109 Circumvention.
- 59.110 Incorporations by reference.
- 59.111 Availability of information and confidentiality.
- Table 1 to Subpart B of Part 59-Volatile ORGANIC COMPOUND (VOC) CONTENT LIM-ITS FOR AUTOMOBILE REFINISH COATINGS

Subpart C-National Volatile Organic Compound Emission Standards for **Consumer Products**

- 59.201 Applicability and designation of regulated entity.
- 59.202 Definitions
- 59.203 Standards for consumer products.
- 59.204 Innovative product provisions.
- Labeling. 59 205
- 59.206 Variances. 59 207
- Test methods.
- 59.208 Charcoal lighter material testing protocol.